用GSPNs解释布尔逻辑驱动的马尔可夫过程

Shahid Khan, J. Katoen, M. Bouissou
{"title":"用GSPNs解释布尔逻辑驱动的马尔可夫过程","authors":"Shahid Khan, J. Katoen, M. Bouissou","doi":"10.1109/EDCC51268.2020.00028","DOIUrl":null,"url":null,"abstract":"Boolean-logic driven Markov processes (BDMPs) is a graphical language for reliability analysis of dynamic repairable systems. BDMPs are capable of defining complex interdependencies among failure modes such as functional dependencies and state-dependent failures. The interpretation of BDMPs is non-trivial due to the many possible complex interactions of activation and failure mechanisms. This paper presents a formal semantics of repairable BDMPs by using generalized stochastic Petri nets (GSPNs). Our semantics is modular and thus easily extendable to other elements, e.g., leaves dedicated to security applications. Priorities on GSPN transitions are used to impose a partial order on various possible interleaving of activation and failure mechanisms. The semantics is realized by the prototypical tool BDMP2GSPN that converts a Figaro description of a BDMP into a GSPN. The reliability and availability metrics of BDMPs are obtained using the probabilistic model-checking capability of the existing GreatSPN tool. Experiments show that our GSPN semantics corresponds to the BDMP interpretation by the tool yet another Monte Carlo simulator (YAMS).","PeriodicalId":212573,"journal":{"name":"2020 16th European Dependable Computing Conference (EDCC)","volume":"70 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Explaining Boolean-Logic Driven Markov Processes using GSPNs\",\"authors\":\"Shahid Khan, J. Katoen, M. Bouissou\",\"doi\":\"10.1109/EDCC51268.2020.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Boolean-logic driven Markov processes (BDMPs) is a graphical language for reliability analysis of dynamic repairable systems. BDMPs are capable of defining complex interdependencies among failure modes such as functional dependencies and state-dependent failures. The interpretation of BDMPs is non-trivial due to the many possible complex interactions of activation and failure mechanisms. This paper presents a formal semantics of repairable BDMPs by using generalized stochastic Petri nets (GSPNs). Our semantics is modular and thus easily extendable to other elements, e.g., leaves dedicated to security applications. Priorities on GSPN transitions are used to impose a partial order on various possible interleaving of activation and failure mechanisms. The semantics is realized by the prototypical tool BDMP2GSPN that converts a Figaro description of a BDMP into a GSPN. The reliability and availability metrics of BDMPs are obtained using the probabilistic model-checking capability of the existing GreatSPN tool. Experiments show that our GSPN semantics corresponds to the BDMP interpretation by the tool yet another Monte Carlo simulator (YAMS).\",\"PeriodicalId\":212573,\"journal\":{\"name\":\"2020 16th European Dependable Computing Conference (EDCC)\",\"volume\":\"70 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 16th European Dependable Computing Conference (EDCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDCC51268.2020.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 16th European Dependable Computing Conference (EDCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDCC51268.2020.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

布尔逻辑驱动马尔可夫过程(BDMPs)是一种用于动态可修系统可靠性分析的图形语言。bdmp能够定义故障模式之间复杂的相互依赖关系,例如功能依赖关系和状态依赖故障。由于激活和失效机制的许多可能的复杂相互作用,对BDMPs的解释是非平凡的。利用广义随机Petri网(GSPNs)给出了可修BDMPs的形式化语义。我们的语义是模块化的,因此很容易扩展到其他元素,例如专用于安全应用程序的叶子。GSPN转换的优先级用于对各种可能的激活和失效机制的交错施加部分顺序。该语义由原型工具BDMP2GSPN实现,该工具将BDMP的费加罗描述转换为GSPN。利用现有GreatSPN工具的概率模型检查功能,获得了bdmp的可靠性和可用性指标。实验表明,我们的GSPN语义对应于另一个蒙特卡罗模拟器(YAMS)的工具的BDMP解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explaining Boolean-Logic Driven Markov Processes using GSPNs
Boolean-logic driven Markov processes (BDMPs) is a graphical language for reliability analysis of dynamic repairable systems. BDMPs are capable of defining complex interdependencies among failure modes such as functional dependencies and state-dependent failures. The interpretation of BDMPs is non-trivial due to the many possible complex interactions of activation and failure mechanisms. This paper presents a formal semantics of repairable BDMPs by using generalized stochastic Petri nets (GSPNs). Our semantics is modular and thus easily extendable to other elements, e.g., leaves dedicated to security applications. Priorities on GSPN transitions are used to impose a partial order on various possible interleaving of activation and failure mechanisms. The semantics is realized by the prototypical tool BDMP2GSPN that converts a Figaro description of a BDMP into a GSPN. The reliability and availability metrics of BDMPs are obtained using the probabilistic model-checking capability of the existing GreatSPN tool. Experiments show that our GSPN semantics corresponds to the BDMP interpretation by the tool yet another Monte Carlo simulator (YAMS).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信