电动汽车光伏系统电池和超级电容器的PI-ACO优化

I. Robandi, Dwi Ajiatmo, Muhlasin
{"title":"电动汽车光伏系统电池和超级电容器的PI-ACO优化","authors":"I. Robandi, Dwi Ajiatmo, Muhlasin","doi":"10.1109/ISITIA52817.2021.9502221","DOIUrl":null,"url":null,"abstract":"In this study, energy management control for Photovoltaic (PV), battery, and a supercapacitor (SC) uses PI with Ant Colony optimization (ACO) tuning, in reducing the output voltage error rate. Supercapacitors to inject high power frequency fluctuations smooth out the battery system power. The optimization of the proposed PI-ACO control was examined and its performance investigated through MATLAB/Simulink simulation with a comparison of PI and PI-FA controllers (Firefly Algorithm). The reference voltage is 42V, the PI-ACO control overshoot is 42. 11V, the setting time is 0. 252s, and the final value is 42. 05V and the PI-Firefly Algorithm (FA) control is 42.17 V, the setting time is 0. 509s, the final value is 42. 18V with PI control, the overshoot is 42. 22V, the setting time value is 0. 256s, the fmal value is 42. 04V when the reference voltage is 52V with PI-ACO control the overshoot value is 52. 34V, the settlement time value is 0. 229s, the final value is 52. 12V with PI-FA control overshoot value 52.50 V, settling time value 0. 502s, and final value 52. 44V with PI control overshoot 52. 70V, setting time 0. 287s, final value 52. 14V. From the performance of the PI-ACO control system, it is shown that the overshoot is smaller, the response time is faster. Future research optimization using hybrid fuzzy-PI.","PeriodicalId":161240,"journal":{"name":"2021 International Seminar on Intelligent Technology and Its Applications (ISITIA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization PI-ACO for Photovoltaic System Battery and Supercapacitor on Electric Vehicle\",\"authors\":\"I. Robandi, Dwi Ajiatmo, Muhlasin\",\"doi\":\"10.1109/ISITIA52817.2021.9502221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, energy management control for Photovoltaic (PV), battery, and a supercapacitor (SC) uses PI with Ant Colony optimization (ACO) tuning, in reducing the output voltage error rate. Supercapacitors to inject high power frequency fluctuations smooth out the battery system power. The optimization of the proposed PI-ACO control was examined and its performance investigated through MATLAB/Simulink simulation with a comparison of PI and PI-FA controllers (Firefly Algorithm). The reference voltage is 42V, the PI-ACO control overshoot is 42. 11V, the setting time is 0. 252s, and the final value is 42. 05V and the PI-Firefly Algorithm (FA) control is 42.17 V, the setting time is 0. 509s, the final value is 42. 18V with PI control, the overshoot is 42. 22V, the setting time value is 0. 256s, the fmal value is 42. 04V when the reference voltage is 52V with PI-ACO control the overshoot value is 52. 34V, the settlement time value is 0. 229s, the final value is 52. 12V with PI-FA control overshoot value 52.50 V, settling time value 0. 502s, and final value 52. 44V with PI control overshoot 52. 70V, setting time 0. 287s, final value 52. 14V. From the performance of the PI-ACO control system, it is shown that the overshoot is smaller, the response time is faster. Future research optimization using hybrid fuzzy-PI.\",\"PeriodicalId\":161240,\"journal\":{\"name\":\"2021 International Seminar on Intelligent Technology and Its Applications (ISITIA)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Seminar on Intelligent Technology and Its Applications (ISITIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISITIA52817.2021.9502221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Seminar on Intelligent Technology and Its Applications (ISITIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITIA52817.2021.9502221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,光伏(PV),电池和超级电容器(SC)的能量管理控制使用PI与蚁群优化(ACO)调谐,以降低输出电压错误率。超级电容器注入高功率频率,平滑电池系统功率波动。通过MATLAB/Simulink仿真,比较PI控制器和PI- fa控制器(Firefly Algorithm)的性能,验证了所提PI- aco控制器的优化性能。参考电压为42V, PI-ACO控制超调量为42。11V,设定时间为0。25s,最后的值是42。PI-Firefly Algorithm (FA)控制为42.17 V,设定时间为0。509s,最终值为42。18V带PI控制,超调量42。22V时,设定时间值为0。256s,正常值是42。参考电压为52V时,采用PI-ACO控制,超调值为52。34V时,沉降时间值为0。229s,最终值是52。12V带PI-FA控制超调值52.50 V,稳定时间值0。502s,最终值52。44V带PI控制超调52。70V,设定时间0。287s,最终值52。14 v。从PI-ACO控制系统的性能分析可以看出,该控制系统的超调量较小,响应速度较快。基于混合模糊pi的未来研究优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization PI-ACO for Photovoltaic System Battery and Supercapacitor on Electric Vehicle
In this study, energy management control for Photovoltaic (PV), battery, and a supercapacitor (SC) uses PI with Ant Colony optimization (ACO) tuning, in reducing the output voltage error rate. Supercapacitors to inject high power frequency fluctuations smooth out the battery system power. The optimization of the proposed PI-ACO control was examined and its performance investigated through MATLAB/Simulink simulation with a comparison of PI and PI-FA controllers (Firefly Algorithm). The reference voltage is 42V, the PI-ACO control overshoot is 42. 11V, the setting time is 0. 252s, and the final value is 42. 05V and the PI-Firefly Algorithm (FA) control is 42.17 V, the setting time is 0. 509s, the final value is 42. 18V with PI control, the overshoot is 42. 22V, the setting time value is 0. 256s, the fmal value is 42. 04V when the reference voltage is 52V with PI-ACO control the overshoot value is 52. 34V, the settlement time value is 0. 229s, the final value is 52. 12V with PI-FA control overshoot value 52.50 V, settling time value 0. 502s, and final value 52. 44V with PI control overshoot 52. 70V, setting time 0. 287s, final value 52. 14V. From the performance of the PI-ACO control system, it is shown that the overshoot is smaller, the response time is faster. Future research optimization using hybrid fuzzy-PI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信