离散交叉的异步粒子群优化

A. Engelbrecht
{"title":"离散交叉的异步粒子群优化","authors":"A. Engelbrecht","doi":"10.1109/SIS.2014.7011788","DOIUrl":null,"url":null,"abstract":"Recent work has evaluated the performance of a synchronous global best (gbest) particle swarm optimization (PSO) algorithm hybridized with discrete crossover operators. This paper investigates if using asynchronous position updates instead of synchronous updates will result in improved performance of a gbest PSO that uses these discrete crossover operators. Empirical analysis of the performance of the resulting algorithms provides strong evidence that asynchronous position updates significantly improves performance of the PSO discrete crossover hybrid algorithms, mainly with respect to accuracy and convergence speed. These improvements were seen over an extensive benchmark suite of 60 boundary constrained minimization problems of various characteristics.","PeriodicalId":380286,"journal":{"name":"2014 IEEE Symposium on Swarm Intelligence","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Asynchronous particle swarm optimization with discrete crossover\",\"authors\":\"A. Engelbrecht\",\"doi\":\"10.1109/SIS.2014.7011788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent work has evaluated the performance of a synchronous global best (gbest) particle swarm optimization (PSO) algorithm hybridized with discrete crossover operators. This paper investigates if using asynchronous position updates instead of synchronous updates will result in improved performance of a gbest PSO that uses these discrete crossover operators. Empirical analysis of the performance of the resulting algorithms provides strong evidence that asynchronous position updates significantly improves performance of the PSO discrete crossover hybrid algorithms, mainly with respect to accuracy and convergence speed. These improvements were seen over an extensive benchmark suite of 60 boundary constrained minimization problems of various characteristics.\",\"PeriodicalId\":380286,\"journal\":{\"name\":\"2014 IEEE Symposium on Swarm Intelligence\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Swarm Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIS.2014.7011788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Swarm Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIS.2014.7011788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

最近的工作评估了与离散交叉算子杂交的同步全局最佳粒子群优化(gbest)算法的性能。本文研究了使用异步位置更新而不是同步更新是否会提高使用这些离散交叉算子的gbest PSO的性能。对所得算法性能的实证分析提供了强有力的证据,表明异步位置更新显著提高了PSO离散交叉混合算法的性能,主要体现在精度和收敛速度方面。这些改进是在60个不同特征的边界约束最小化问题的广泛基准套件中看到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asynchronous particle swarm optimization with discrete crossover
Recent work has evaluated the performance of a synchronous global best (gbest) particle swarm optimization (PSO) algorithm hybridized with discrete crossover operators. This paper investigates if using asynchronous position updates instead of synchronous updates will result in improved performance of a gbest PSO that uses these discrete crossover operators. Empirical analysis of the performance of the resulting algorithms provides strong evidence that asynchronous position updates significantly improves performance of the PSO discrete crossover hybrid algorithms, mainly with respect to accuracy and convergence speed. These improvements were seen over an extensive benchmark suite of 60 boundary constrained minimization problems of various characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信