{"title":"一种同时测量大气湍流特征尺度和强度的简单光学方法","authors":"A. Zhukov, V. Nosov","doi":"10.1364/lors.1987.tuc2","DOIUrl":null,"url":null,"abstract":"For solving a large number of problems on optical radiation propagation in the atmosphere the atmospheric turbulent characteristics should be determined. There are the inner l\n 0\n and outer L\n 0\n scales of turbulence, structural characteristics of fluctuations of the refractive index \n \n \n \n C\n n\n 2\n \n \n \n . The value of \n \n \n \n C\n n\n 2\n \n \n \n determines the turbulence intensity. All these characteristics are the parameters in the spatial spectral density φ\n n\n (x). The function is given as [1,2] where x\n m\n =5,92/l0, x\n 0\n =2π/L\n 0\n . In the inertial subrange (x\n 0\n ≤ x ≤ x\n m\n ) the model (1) coincides with the Kolmogorov spectrum of turbulence.","PeriodicalId":339230,"journal":{"name":"Topical Meeting on Laser and Optical Remote Sensing: Instrumentation and Techniques","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simple Optical Method of Simultaneous Measurement of Characteristic Scales and Intensity of Atmospheric Turbulence\",\"authors\":\"A. Zhukov, V. Nosov\",\"doi\":\"10.1364/lors.1987.tuc2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For solving a large number of problems on optical radiation propagation in the atmosphere the atmospheric turbulent characteristics should be determined. There are the inner l\\n 0\\n and outer L\\n 0\\n scales of turbulence, structural characteristics of fluctuations of the refractive index \\n \\n \\n \\n C\\n n\\n 2\\n \\n \\n \\n . The value of \\n \\n \\n \\n C\\n n\\n 2\\n \\n \\n \\n determines the turbulence intensity. All these characteristics are the parameters in the spatial spectral density φ\\n n\\n (x). The function is given as [1,2] where x\\n m\\n =5,92/l0, x\\n 0\\n =2π/L\\n 0\\n . In the inertial subrange (x\\n 0\\n ≤ x ≤ x\\n m\\n ) the model (1) coincides with the Kolmogorov spectrum of turbulence.\",\"PeriodicalId\":339230,\"journal\":{\"name\":\"Topical Meeting on Laser and Optical Remote Sensing: Instrumentation and Techniques\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topical Meeting on Laser and Optical Remote Sensing: Instrumentation and Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/lors.1987.tuc2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topical Meeting on Laser and Optical Remote Sensing: Instrumentation and Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/lors.1987.tuc2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
为了解决光辐射在大气中传播的大量问题,必须确定大气湍流特性。湍流有内部l0和外部l0尺度,折射率cn2波动的结构特征。c2的值决定了湍流的强度。所有这些特征都是空间谱密度φ n (x)中的参数,函数为[1,2],其中x m =5,92/ 10, x 0 =2π/L 0。在惯性子范围(x 0≤x≤x m),模型(1)与湍流的Kolmogorov谱重合。
A Simple Optical Method of Simultaneous Measurement of Characteristic Scales and Intensity of Atmospheric Turbulence
For solving a large number of problems on optical radiation propagation in the atmosphere the atmospheric turbulent characteristics should be determined. There are the inner l
0
and outer L
0
scales of turbulence, structural characteristics of fluctuations of the refractive index
C
n
2
. The value of
C
n
2
determines the turbulence intensity. All these characteristics are the parameters in the spatial spectral density φ
n
(x). The function is given as [1,2] where x
m
=5,92/l0, x
0
=2π/L
0
. In the inertial subrange (x
0
≤ x ≤ x
m
) the model (1) coincides with the Kolmogorov spectrum of turbulence.