噪声测量中的分量追踪

Yongjian Zhao, Bin Jiang
{"title":"噪声测量中的分量追踪","authors":"Yongjian Zhao, Bin Jiang","doi":"10.1109/ICSGEA.2018.00044","DOIUrl":null,"url":null,"abstract":"To achieve efficient component pursuit from noisy measurements, a learning algorithm is presented that combines standard gradient principle and the standard stochastic approximations. By extending the linear predictor principle from noise-free case, a proper objective function is introduced which has the same generic form as that for the noise-free case. Extensive computer simulations are performed to illustrate the power of the presented technique.","PeriodicalId":445324,"journal":{"name":"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Component Pursuit from Noisy Measurements\",\"authors\":\"Yongjian Zhao, Bin Jiang\",\"doi\":\"10.1109/ICSGEA.2018.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To achieve efficient component pursuit from noisy measurements, a learning algorithm is presented that combines standard gradient principle and the standard stochastic approximations. By extending the linear predictor principle from noise-free case, a proper objective function is introduced which has the same generic form as that for the noise-free case. Extensive computer simulations are performed to illustrate the power of the presented technique.\",\"PeriodicalId\":445324,\"journal\":{\"name\":\"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSGEA.2018.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSGEA.2018.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了从噪声测量中实现有效的分量追踪,提出了一种结合标准梯度原理和标准随机逼近的学习算法。通过推广无噪声情况下的线性预测器原理,引入了与无噪声情况下具有相同一般形式的适当目标函数。进行了大量的计算机模拟,以说明所提出的技术的力量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Component Pursuit from Noisy Measurements
To achieve efficient component pursuit from noisy measurements, a learning algorithm is presented that combines standard gradient principle and the standard stochastic approximations. By extending the linear predictor principle from noise-free case, a proper objective function is introduced which has the same generic form as that for the noise-free case. Extensive computer simulations are performed to illustrate the power of the presented technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信