基于3G无线电测量的新型QoE模型的天线倾斜优化

V. Pedras, M. Sousa, P. Vieira, Tiago Rosa Maria Paula Queluz, A. Rodrigues
{"title":"基于3G无线电测量的新型QoE模型的天线倾斜优化","authors":"V. Pedras, M. Sousa, P. Vieira, Tiago Rosa Maria Paula Queluz, A. Rodrigues","doi":"10.1109/WPMC.2017.8301794","DOIUrl":null,"url":null,"abstract":"This paper presents a novel Quality of Experience model (QoE), for 3G voice calls; it estimates a user perceived quality, in a Mean Opinion Score (MOS) scale, by evaluating several Radio Frequency (RF) channel metrics. Real Drive Test (DT) data with MOS measurements have been used as reference data, in order to produce a new MOS prediction model, using machine learning techniques. The new developed model enables the application of QoE as a possible network optimization criteria. Furthermore, it is showcased a generic framework to optimize antenna physical parameters. Using this framework, an algorithm was implemented which empowers the network MOS estimation by using the developed QoE model. A Root Mean Square Error (RMSE) of 9% was achieved, on the MOS prediction, using the developed model. Concerning the MOS antenna physical parameters optimization, it resulted in an average network performance gain of 5% comparatively to a interference control generic approach.","PeriodicalId":239243,"journal":{"name":"2017 20th International Symposium on Wireless Personal Multimedia Communications (WPMC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Antenna tilt optimization using a novel QoE model based on 3G radio measurements\",\"authors\":\"V. Pedras, M. Sousa, P. Vieira, Tiago Rosa Maria Paula Queluz, A. Rodrigues\",\"doi\":\"10.1109/WPMC.2017.8301794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel Quality of Experience model (QoE), for 3G voice calls; it estimates a user perceived quality, in a Mean Opinion Score (MOS) scale, by evaluating several Radio Frequency (RF) channel metrics. Real Drive Test (DT) data with MOS measurements have been used as reference data, in order to produce a new MOS prediction model, using machine learning techniques. The new developed model enables the application of QoE as a possible network optimization criteria. Furthermore, it is showcased a generic framework to optimize antenna physical parameters. Using this framework, an algorithm was implemented which empowers the network MOS estimation by using the developed QoE model. A Root Mean Square Error (RMSE) of 9% was achieved, on the MOS prediction, using the developed model. Concerning the MOS antenna physical parameters optimization, it resulted in an average network performance gain of 5% comparatively to a interference control generic approach.\",\"PeriodicalId\":239243,\"journal\":{\"name\":\"2017 20th International Symposium on Wireless Personal Multimedia Communications (WPMC)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th International Symposium on Wireless Personal Multimedia Communications (WPMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WPMC.2017.8301794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Symposium on Wireless Personal Multimedia Communications (WPMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPMC.2017.8301794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种新的3G语音通话体验质量模型(QoE);它通过评估几个射频(RF)信道指标,以平均意见评分(MOS)量表估计用户感知的质量。实际驾驶测试(DT)数据与MOS测量被用作参考数据,为了产生一个新的MOS预测模型,使用机器学习技术。新开发的模型使QoE作为一种可能的网络优化标准得以应用。在此基础上,给出了天线物理参数优化的通用框架。在此框架下,实现了一种算法,该算法利用所开发的QoE模型对网络进行MOS估计。使用开发的模型,对MOS预测实现了9%的均方根误差(RMSE)。在MOS天线物理参数优化方面,与一般干扰控制方法相比,平均网络性能提高5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antenna tilt optimization using a novel QoE model based on 3G radio measurements
This paper presents a novel Quality of Experience model (QoE), for 3G voice calls; it estimates a user perceived quality, in a Mean Opinion Score (MOS) scale, by evaluating several Radio Frequency (RF) channel metrics. Real Drive Test (DT) data with MOS measurements have been used as reference data, in order to produce a new MOS prediction model, using machine learning techniques. The new developed model enables the application of QoE as a possible network optimization criteria. Furthermore, it is showcased a generic framework to optimize antenna physical parameters. Using this framework, an algorithm was implemented which empowers the network MOS estimation by using the developed QoE model. A Root Mean Square Error (RMSE) of 9% was achieved, on the MOS prediction, using the developed model. Concerning the MOS antenna physical parameters optimization, it resulted in an average network performance gain of 5% comparatively to a interference control generic approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信