基于改进萤火虫群优化算法的比例-积分-导数控制器参数优化

Xing Guo, Shi-Chao Yin, Yi Zhang, Wei Li
{"title":"基于改进萤火虫群优化算法的比例-积分-导数控制器参数优化","authors":"Xing Guo, Shi-Chao Yin, Yi Zhang, Wei Li","doi":"10.1504/ijcsm.2020.10028217","DOIUrl":null,"url":null,"abstract":"The proportional-integral-derivative (PID) controller parameters tuning, is seeking the optimal value in the space of three parameters to achieve the optimal control performance of the system. It is the core of contemporary feedback control system design. However, its easily falling into local optimum weakened its global search ability. To tackle this problem, this paper proposes an improved glowworm swarm optimisation algorithm, (D-AGSO) with the introduction of directed moving and adaptive step strategy. The simulation experimental results show that D-AGSO continuously adapts the tuning parameters, achieving lower fluctuations features, time settling and smaller steady state error, specially applied to the time delay in the case of inertia controlled system of industrial production.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Proportional-integral-derivative controller parameter optimisation based on improved glowworm swarm optimisation algorithm\",\"authors\":\"Xing Guo, Shi-Chao Yin, Yi Zhang, Wei Li\",\"doi\":\"10.1504/ijcsm.2020.10028217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proportional-integral-derivative (PID) controller parameters tuning, is seeking the optimal value in the space of three parameters to achieve the optimal control performance of the system. It is the core of contemporary feedback control system design. However, its easily falling into local optimum weakened its global search ability. To tackle this problem, this paper proposes an improved glowworm swarm optimisation algorithm, (D-AGSO) with the introduction of directed moving and adaptive step strategy. The simulation experimental results show that D-AGSO continuously adapts the tuning parameters, achieving lower fluctuations features, time settling and smaller steady state error, specially applied to the time delay in the case of inertia controlled system of industrial production.\",\"PeriodicalId\":399731,\"journal\":{\"name\":\"Int. J. Comput. Sci. Math.\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcsm.2020.10028217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcsm.2020.10028217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

比例-积分-导数(PID)控制器的参数整定,就是在三个参数的空间中寻找最优值,以达到系统的最优控制性能。它是当代反馈控制系统设计的核心。然而,它容易陷入局部最优,削弱了它的全局搜索能力。为了解决这一问题,本文提出了一种改进的萤火虫群优化算法(D-AGSO),该算法引入了定向移动和自适应步进策略。仿真实验结果表明,D-AGSO可连续自适应整定参数,实现了较低的波动特性、时间稳定和较小的稳态误差,特别适用于工业生产惯性控制系统的时滞情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proportional-integral-derivative controller parameter optimisation based on improved glowworm swarm optimisation algorithm
The proportional-integral-derivative (PID) controller parameters tuning, is seeking the optimal value in the space of three parameters to achieve the optimal control performance of the system. It is the core of contemporary feedback control system design. However, its easily falling into local optimum weakened its global search ability. To tackle this problem, this paper proposes an improved glowworm swarm optimisation algorithm, (D-AGSO) with the introduction of directed moving and adaptive step strategy. The simulation experimental results show that D-AGSO continuously adapts the tuning parameters, achieving lower fluctuations features, time settling and smaller steady state error, specially applied to the time delay in the case of inertia controlled system of industrial production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信