未知参数分数阶永磁同步电机的有限时间同步

K. Shao, Xinyu Huang
{"title":"未知参数分数阶永磁同步电机的有限时间同步","authors":"K. Shao, Xinyu Huang","doi":"10.1109/CCDC52312.2021.9601485","DOIUrl":null,"url":null,"abstract":"This paper takes the PMSM system as the object, firstly, the PMSM model in the rotor-field-oriented coordinate system is transformed into a simple dimensionless mathematical model through coordinate transformation, and the chaotic dynamic behavior of fractional-order PMSM model is analyzed through numerical simulation. Then, a finite-time controller is designed by using Lyapunov stability theory, and the parameter identification rules are introduced into the finite-time synchronization controller to realize the synchronization of PMSM system with unknown parameters. Finally, the simulation results are given by numerical simulation, which proves the effectiveness of the scheme for fractional-order PMSM chaotic system when the system parameters are unknown.","PeriodicalId":143976,"journal":{"name":"2021 33rd Chinese Control and Decision Conference (CCDC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finite-time synchronization of fractional-order PMSM with unknown parameters\",\"authors\":\"K. Shao, Xinyu Huang\",\"doi\":\"10.1109/CCDC52312.2021.9601485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper takes the PMSM system as the object, firstly, the PMSM model in the rotor-field-oriented coordinate system is transformed into a simple dimensionless mathematical model through coordinate transformation, and the chaotic dynamic behavior of fractional-order PMSM model is analyzed through numerical simulation. Then, a finite-time controller is designed by using Lyapunov stability theory, and the parameter identification rules are introduced into the finite-time synchronization controller to realize the synchronization of PMSM system with unknown parameters. Finally, the simulation results are given by numerical simulation, which proves the effectiveness of the scheme for fractional-order PMSM chaotic system when the system parameters are unknown.\",\"PeriodicalId\":143976,\"journal\":{\"name\":\"2021 33rd Chinese Control and Decision Conference (CCDC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 33rd Chinese Control and Decision Conference (CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC52312.2021.9601485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 33rd Chinese Control and Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC52312.2021.9601485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文以永磁同步电机系统为研究对象,首先通过坐标变换将转子场导向坐标系下的永磁同步电机模型转化为简单的无量纲数学模型,并通过数值仿真分析分数阶永磁同步电机模型的混沌动力学行为。然后,利用李雅普诺夫稳定性理论设计了有限时间同步控制器,并将参数辨识规则引入到有限时间同步控制器中,实现了参数未知的永磁同步电机系统的同步。最后,通过数值仿真给出了仿真结果,证明了该方案在分数阶永磁同步电机混沌系统参数未知时的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite-time synchronization of fractional-order PMSM with unknown parameters
This paper takes the PMSM system as the object, firstly, the PMSM model in the rotor-field-oriented coordinate system is transformed into a simple dimensionless mathematical model through coordinate transformation, and the chaotic dynamic behavior of fractional-order PMSM model is analyzed through numerical simulation. Then, a finite-time controller is designed by using Lyapunov stability theory, and the parameter identification rules are introduced into the finite-time synchronization controller to realize the synchronization of PMSM system with unknown parameters. Finally, the simulation results are given by numerical simulation, which proves the effectiveness of the scheme for fractional-order PMSM chaotic system when the system parameters are unknown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信