{"title":"基于字符感知注意力的端到端语音识别","authors":"Zhong Meng, Yashesh Gaur, Jinyu Li, Y. Gong","doi":"10.1109/ASRU46091.2019.9004018","DOIUrl":null,"url":null,"abstract":"Predicting words and subword units (WSUs) as the output has shown to be effective for the attention-based encoder-decoder (AED) model in end-to-end speech recognition. However, as one input to the decoder recurrent neural network (RNN), each WSU embedding is learned independently through context and acoustic information in a purely data-driven fashion. Little effort has been made to explicitly model the morphological relationships among WSUs. In this work, we propose a novel character-aware (CA) AED model in which each WSU embedding is computed by summarizing the embeddings of its constituent characters using a CA-RNN. This WSU-independent CA-RNN is jointly trained with the encoder, the decoder and the attention network of a conventional AED to predict WSUs. With CA-AED, the embeddings of morphologically similar WSUs are naturally and directly correlated through the CA-RNN in addition to the semantic and acoustic relations modeled by a traditional AED. Moreover, CA-AED significantly reduces the model parameters in a traditional AED by replacing the large pool of WSU embeddings with a much smaller set of character embeddings. On a 3400 hours Microsoft Cortana dataset, CA-AED achieves up to 11.9% relative WER improvement over a strong AED baseline with 27.1% fewer model parameters.","PeriodicalId":150913,"journal":{"name":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"319 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Character-Aware Attention-Based End-to-End Speech Recognition\",\"authors\":\"Zhong Meng, Yashesh Gaur, Jinyu Li, Y. Gong\",\"doi\":\"10.1109/ASRU46091.2019.9004018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting words and subword units (WSUs) as the output has shown to be effective for the attention-based encoder-decoder (AED) model in end-to-end speech recognition. However, as one input to the decoder recurrent neural network (RNN), each WSU embedding is learned independently through context and acoustic information in a purely data-driven fashion. Little effort has been made to explicitly model the morphological relationships among WSUs. In this work, we propose a novel character-aware (CA) AED model in which each WSU embedding is computed by summarizing the embeddings of its constituent characters using a CA-RNN. This WSU-independent CA-RNN is jointly trained with the encoder, the decoder and the attention network of a conventional AED to predict WSUs. With CA-AED, the embeddings of morphologically similar WSUs are naturally and directly correlated through the CA-RNN in addition to the semantic and acoustic relations modeled by a traditional AED. Moreover, CA-AED significantly reduces the model parameters in a traditional AED by replacing the large pool of WSU embeddings with a much smaller set of character embeddings. On a 3400 hours Microsoft Cortana dataset, CA-AED achieves up to 11.9% relative WER improvement over a strong AED baseline with 27.1% fewer model parameters.\",\"PeriodicalId\":150913,\"journal\":{\"name\":\"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"volume\":\"319 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU46091.2019.9004018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU46091.2019.9004018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting words and subword units (WSUs) as the output has shown to be effective for the attention-based encoder-decoder (AED) model in end-to-end speech recognition. However, as one input to the decoder recurrent neural network (RNN), each WSU embedding is learned independently through context and acoustic information in a purely data-driven fashion. Little effort has been made to explicitly model the morphological relationships among WSUs. In this work, we propose a novel character-aware (CA) AED model in which each WSU embedding is computed by summarizing the embeddings of its constituent characters using a CA-RNN. This WSU-independent CA-RNN is jointly trained with the encoder, the decoder and the attention network of a conventional AED to predict WSUs. With CA-AED, the embeddings of morphologically similar WSUs are naturally and directly correlated through the CA-RNN in addition to the semantic and acoustic relations modeled by a traditional AED. Moreover, CA-AED significantly reduces the model parameters in a traditional AED by replacing the large pool of WSU embeddings with a much smaller set of character embeddings. On a 3400 hours Microsoft Cortana dataset, CA-AED achieves up to 11.9% relative WER improvement over a strong AED baseline with 27.1% fewer model parameters.