最大化公平除法的近似算法

Siddharth Barman, S. K. Murthy
{"title":"最大化公平除法的近似算法","authors":"Siddharth Barman, S. K. Murthy","doi":"10.1145/3033274.3085136","DOIUrl":null,"url":null,"abstract":"We consider the problem of dividing indivisible goods fairly among n agents who have additive and submodular valuations for the goods. Our fairness guarantees are in terms of the maximin share, that is defined to be the maximum value that an agent can ensure for herself, if she were to partition the goods into n bundles, and then receive a minimum valued bundle. Since maximin fair allocations (i.e., allocations in which each agent gets at least her maximin share) do not always exist, prior work has focussed on approximation results that aim to find allocations in which the value of the bundle allocated to each agent is (multiplicatively) as close to her maximin share as possible. In particular, Procaccia and Wang (2014) along with Amanatidis et al. (2015) have shown that under additive valuations a 2/3-approximate maximin fair allocation always exists and can be found in polynomial time. We complement these results by developing a simple and efficient algorithm that achieves the same approximation guarantee. Furthermore, we initiate the study of approximate maximin fair division under submodular valuations. Specifically, we show that when the valuations of the agents are nonnegative, monotone, and submodular, then a 1/10-approximate maximin fair allocation is guaranteed to exist. In fact, we show that such an allocation can be efficiently found by using a simple round-robin algorithm. A technical contribution of the paper is to analyze the performance of this combinatorial algorithm by employing the concept of multilinear extensions.","PeriodicalId":287551,"journal":{"name":"Proceedings of the 2017 ACM Conference on Economics and Computation","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"135","resultStr":"{\"title\":\"Approximation Algorithms for Maximin Fair Division\",\"authors\":\"Siddharth Barman, S. K. Murthy\",\"doi\":\"10.1145/3033274.3085136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of dividing indivisible goods fairly among n agents who have additive and submodular valuations for the goods. Our fairness guarantees are in terms of the maximin share, that is defined to be the maximum value that an agent can ensure for herself, if she were to partition the goods into n bundles, and then receive a minimum valued bundle. Since maximin fair allocations (i.e., allocations in which each agent gets at least her maximin share) do not always exist, prior work has focussed on approximation results that aim to find allocations in which the value of the bundle allocated to each agent is (multiplicatively) as close to her maximin share as possible. In particular, Procaccia and Wang (2014) along with Amanatidis et al. (2015) have shown that under additive valuations a 2/3-approximate maximin fair allocation always exists and can be found in polynomial time. We complement these results by developing a simple and efficient algorithm that achieves the same approximation guarantee. Furthermore, we initiate the study of approximate maximin fair division under submodular valuations. Specifically, we show that when the valuations of the agents are nonnegative, monotone, and submodular, then a 1/10-approximate maximin fair allocation is guaranteed to exist. In fact, we show that such an allocation can be efficiently found by using a simple round-robin algorithm. A technical contribution of the paper is to analyze the performance of this combinatorial algorithm by employing the concept of multilinear extensions.\",\"PeriodicalId\":287551,\"journal\":{\"name\":\"Proceedings of the 2017 ACM Conference on Economics and Computation\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"135\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM Conference on Economics and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3033274.3085136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3033274.3085136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 135

摘要

我们考虑在n个对商品具有加性和次模性估价的代理之间公平分配不可分割商品的问题。我们的公平保证是用最大份额来表示的,它被定义为如果一个代理将商品分成n个包,然后得到一个价值最小的包,那么她能为自己保证的最大价值。由于最大公平分配(即每个代理至少获得其最大份额的分配)并不总是存在,因此先前的工作主要集中在近似结果上,旨在找到分配给每个代理的bundle的值(乘上)尽可能接近其最大份额的分配。特别是,Procaccia和Wang(2014)以及Amanatidis等人(2015)已经表明,在可加性估值下,2/3近似最大公平分配总是存在的,并且可以在多项式时间内找到。我们通过开发一种简单有效的算法来补充这些结果,以实现相同的近似保证。在此基础上,研究了次模估值下的近似极大值公平分割问题。具体地说,我们证明了当代理的估值是非负的、单调的和次模的,那么一个1/10近似的最大公平分配是保证存在的。事实上,我们证明了这样的分配可以通过使用简单的轮循算法有效地找到。本文的一个技术贡献是利用多线性扩展的概念分析了该组合算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation Algorithms for Maximin Fair Division
We consider the problem of dividing indivisible goods fairly among n agents who have additive and submodular valuations for the goods. Our fairness guarantees are in terms of the maximin share, that is defined to be the maximum value that an agent can ensure for herself, if she were to partition the goods into n bundles, and then receive a minimum valued bundle. Since maximin fair allocations (i.e., allocations in which each agent gets at least her maximin share) do not always exist, prior work has focussed on approximation results that aim to find allocations in which the value of the bundle allocated to each agent is (multiplicatively) as close to her maximin share as possible. In particular, Procaccia and Wang (2014) along with Amanatidis et al. (2015) have shown that under additive valuations a 2/3-approximate maximin fair allocation always exists and can be found in polynomial time. We complement these results by developing a simple and efficient algorithm that achieves the same approximation guarantee. Furthermore, we initiate the study of approximate maximin fair division under submodular valuations. Specifically, we show that when the valuations of the agents are nonnegative, monotone, and submodular, then a 1/10-approximate maximin fair allocation is guaranteed to exist. In fact, we show that such an allocation can be efficiently found by using a simple round-robin algorithm. A technical contribution of the paper is to analyze the performance of this combinatorial algorithm by employing the concept of multilinear extensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信