带有标签噪声的多类别分类鲁棒二值损失

Defu Liu, Guowu Yang, Jinzhao Wu, Jiayi Zhao, Fengmao Lv
{"title":"带有标签噪声的多类别分类鲁棒二值损失","authors":"Defu Liu, Guowu Yang, Jinzhao Wu, Jiayi Zhao, Fengmao Lv","doi":"10.1109/ICASSP39728.2021.9414493","DOIUrl":null,"url":null,"abstract":"Deep learning has achieved tremendous success in image classification. However, the corresponding performance leap relies heavily on large-scale accurate annotations, which are usually hard to collect in reality. It is essential to explore methods that can train deep models effectively under label noise. To address the problem, we propose to train deep models with robust binary loss functions. To be specific, we tackle the K-class classification task by using K binary classifiers. We can immediately use multi-category large margin classification approaches, e.g., Pairwise-Comparison (PC) or One-Versus-All (OVA), to jointly train the binary classifiers for multi-category classification. Our method can be robust to label noise if symmetric functions, e.g., the sigmoid loss or the ramp loss, are employed as the binary loss function in the framework of risk minimization. The learning theory reveals that our method can be inherently tolerant to label noise in multi-category classification tasks. Extensive experiments over different datasets with different types of label noise are conducted. The experimental results clearly confirm the effectiveness of our method.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robust Binary Loss for Multi-Category Classification with Label Noise\",\"authors\":\"Defu Liu, Guowu Yang, Jinzhao Wu, Jiayi Zhao, Fengmao Lv\",\"doi\":\"10.1109/ICASSP39728.2021.9414493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning has achieved tremendous success in image classification. However, the corresponding performance leap relies heavily on large-scale accurate annotations, which are usually hard to collect in reality. It is essential to explore methods that can train deep models effectively under label noise. To address the problem, we propose to train deep models with robust binary loss functions. To be specific, we tackle the K-class classification task by using K binary classifiers. We can immediately use multi-category large margin classification approaches, e.g., Pairwise-Comparison (PC) or One-Versus-All (OVA), to jointly train the binary classifiers for multi-category classification. Our method can be robust to label noise if symmetric functions, e.g., the sigmoid loss or the ramp loss, are employed as the binary loss function in the framework of risk minimization. The learning theory reveals that our method can be inherently tolerant to label noise in multi-category classification tasks. Extensive experiments over different datasets with different types of label noise are conducted. The experimental results clearly confirm the effectiveness of our method.\",\"PeriodicalId\":347060,\"journal\":{\"name\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP39728.2021.9414493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9414493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

深度学习在图像分类方面取得了巨大的成功。然而,相应的性能飞跃在很大程度上依赖于大规模准确的注释,而这些注释在现实中通常很难收集到。探索在标签噪声下有效训练深度模型的方法至关重要。为了解决这个问题,我们提出用鲁棒二值损失函数训练深度模型。具体来说,我们通过使用K个二元分类器来处理K类分类任务。我们可以立即使用多类别大边际分类方法,例如,成对比较(Pairwise-Comparison, PC)或单对全(One-Versus-All, OVA),来联合训练用于多类别分类的二元分类器。如果在风险最小化的框架下使用对称函数,如s型损失或斜坡损失作为二值损失函数,我们的方法对噪声标记具有鲁棒性。学习理论表明,该方法对多类别分类任务中的标签噪声具有固有的容忍度。在具有不同类型标签噪声的不同数据集上进行了广泛的实验。实验结果清楚地证实了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Binary Loss for Multi-Category Classification with Label Noise
Deep learning has achieved tremendous success in image classification. However, the corresponding performance leap relies heavily on large-scale accurate annotations, which are usually hard to collect in reality. It is essential to explore methods that can train deep models effectively under label noise. To address the problem, we propose to train deep models with robust binary loss functions. To be specific, we tackle the K-class classification task by using K binary classifiers. We can immediately use multi-category large margin classification approaches, e.g., Pairwise-Comparison (PC) or One-Versus-All (OVA), to jointly train the binary classifiers for multi-category classification. Our method can be robust to label noise if symmetric functions, e.g., the sigmoid loss or the ramp loss, are employed as the binary loss function in the framework of risk minimization. The learning theory reveals that our method can be inherently tolerant to label noise in multi-category classification tasks. Extensive experiments over different datasets with different types of label noise are conducted. The experimental results clearly confirm the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信