住宅直流微电网最优经济运行的随机模型预测控制

M. Gulin, J. Matuško, M. Vašak
{"title":"住宅直流微电网最优经济运行的随机模型预测控制","authors":"M. Gulin, J. Matuško, M. Vašak","doi":"10.1109/ICIT.2015.7125149","DOIUrl":null,"url":null,"abstract":"In this paper we present power flow optimization of a residential DC microgrid that consists of photovoltaic array, batteries stack and fuel cells stack with electrolyser, and is connected to the grid via bidirectional power converter. The optimization problem aims to minimize microgrid operating costs and is formulated using a linear program that takes into account the storages charge and discharge efficiency. To account for power predictions uncertainty, optimization problem is defined in a stochastic framework by using chance constraints. Since we assume that the error in realization of power predictions will be compensated by utility grid, chance constraints are defined for power exchange between the microgrid and the utility grid. Finally, we investigate a stochastic model predictive control for the closed-loop power management in the microgrid. Performance verification of the proposed approach is performed on simulations for two-month period.","PeriodicalId":156295,"journal":{"name":"2015 IEEE International Conference on Industrial Technology (ICIT)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Stochastic model predictive control for optimal economic operation of a residential DC microgrid\",\"authors\":\"M. Gulin, J. Matuško, M. Vašak\",\"doi\":\"10.1109/ICIT.2015.7125149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present power flow optimization of a residential DC microgrid that consists of photovoltaic array, batteries stack and fuel cells stack with electrolyser, and is connected to the grid via bidirectional power converter. The optimization problem aims to minimize microgrid operating costs and is formulated using a linear program that takes into account the storages charge and discharge efficiency. To account for power predictions uncertainty, optimization problem is defined in a stochastic framework by using chance constraints. Since we assume that the error in realization of power predictions will be compensated by utility grid, chance constraints are defined for power exchange between the microgrid and the utility grid. Finally, we investigate a stochastic model predictive control for the closed-loop power management in the microgrid. Performance verification of the proposed approach is performed on simulations for two-month period.\",\"PeriodicalId\":156295,\"journal\":{\"name\":\"2015 IEEE International Conference on Industrial Technology (ICIT)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Industrial Technology (ICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2015.7125149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2015.7125149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

本文提出了一种由光伏阵列、蓄电池堆和带电解槽的燃料电池堆组成的住宅直流微电网的潮流优化方案,该微电网通过双向功率变换器与电网连接。优化问题以微电网运行成本最小为目标,采用考虑储能系统充放电效率的线性规划进行求解。为了考虑功率预测的不确定性,在随机框架中使用机会约束来定义优化问题。由于我们假设实现功率预测的误差将由公用电网补偿,因此定义了微网与公用电网之间的功率交换的机会约束。最后,研究了一种用于微电网闭环电源管理的随机模型预测控制。对该方法进行了为期两个月的仿真验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic model predictive control for optimal economic operation of a residential DC microgrid
In this paper we present power flow optimization of a residential DC microgrid that consists of photovoltaic array, batteries stack and fuel cells stack with electrolyser, and is connected to the grid via bidirectional power converter. The optimization problem aims to minimize microgrid operating costs and is formulated using a linear program that takes into account the storages charge and discharge efficiency. To account for power predictions uncertainty, optimization problem is defined in a stochastic framework by using chance constraints. Since we assume that the error in realization of power predictions will be compensated by utility grid, chance constraints are defined for power exchange between the microgrid and the utility grid. Finally, we investigate a stochastic model predictive control for the closed-loop power management in the microgrid. Performance verification of the proposed approach is performed on simulations for two-month period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信