通过提升马尔可夫链加速分布式共识

Wen J. Li, H. Dai
{"title":"通过提升马尔可夫链加速分布式共识","authors":"Wen J. Li, H. Dai","doi":"10.1109/ISIT.2007.4557655","DOIUrl":null,"url":null,"abstract":"Existing works on distributed averaging explore linear iterations based on reversible Markov chains. The convergence of such algorithms is bounded to be slow due to the diffusive behavior of the reversible chains. It has been observed that certain nonreversible chains lifted from reversible ones mix substantially faster than the original chains. We show that the idea of nonreversible lifting lends itself naturally to a fast distributed averaging algorithm, where each node maintains multiple estimates, corresponding to multiple lifted states in the Markov chain. We give a rigorous proof that it is possible to achieve an e-averaging time of Theta(k log(1/isin)) on a k times k grid. For a general wireless network, we propose a Location-Aided Distributed Averaging (LADA) algorithm, which utilizes local information to construct a fast-mixing nonreversible chain in a distributed manner. We show that using LADA, an e-averaging time of Theta(r-1 log(1/isin)) is achievable in a wireless network with transmission radius r.","PeriodicalId":193467,"journal":{"name":"2007 IEEE International Symposium on Information Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Accelerating Distributed Consensus Via Lifting Markov Chains\",\"authors\":\"Wen J. Li, H. Dai\",\"doi\":\"10.1109/ISIT.2007.4557655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing works on distributed averaging explore linear iterations based on reversible Markov chains. The convergence of such algorithms is bounded to be slow due to the diffusive behavior of the reversible chains. It has been observed that certain nonreversible chains lifted from reversible ones mix substantially faster than the original chains. We show that the idea of nonreversible lifting lends itself naturally to a fast distributed averaging algorithm, where each node maintains multiple estimates, corresponding to multiple lifted states in the Markov chain. We give a rigorous proof that it is possible to achieve an e-averaging time of Theta(k log(1/isin)) on a k times k grid. For a general wireless network, we propose a Location-Aided Distributed Averaging (LADA) algorithm, which utilizes local information to construct a fast-mixing nonreversible chain in a distributed manner. We show that using LADA, an e-averaging time of Theta(r-1 log(1/isin)) is achievable in a wireless network with transmission radius r.\",\"PeriodicalId\":193467,\"journal\":{\"name\":\"2007 IEEE International Symposium on Information Theory\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2007.4557655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2007.4557655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

现有的分布式平均研究是基于可逆马尔可夫链的线性迭代。由于可逆链的扩散特性,这种算法的收敛速度很慢。已经观察到,从可逆链中分离出来的某些不可逆链比原来的链混合得快得多。我们证明了不可逆提升的思想自然地适用于快速分布式平均算法,其中每个节点保持多个估计,对应于马尔可夫链中的多个提升状态。我们给出了一个严格的证明,证明在k × k网格上实现Theta(k log(1/isin))的e平均时间是可能的。对于一般的无线网络,我们提出了一种位置辅助分布式平均(LADA)算法,该算法利用局部信息以分布式的方式构建快速混合的不可逆链。我们证明了使用LADA,在传输半径为r的无线网络中可以实现Theta(r-1 log(1/isin))的e平均时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating Distributed Consensus Via Lifting Markov Chains
Existing works on distributed averaging explore linear iterations based on reversible Markov chains. The convergence of such algorithms is bounded to be slow due to the diffusive behavior of the reversible chains. It has been observed that certain nonreversible chains lifted from reversible ones mix substantially faster than the original chains. We show that the idea of nonreversible lifting lends itself naturally to a fast distributed averaging algorithm, where each node maintains multiple estimates, corresponding to multiple lifted states in the Markov chain. We give a rigorous proof that it is possible to achieve an e-averaging time of Theta(k log(1/isin)) on a k times k grid. For a general wireless network, we propose a Location-Aided Distributed Averaging (LADA) algorithm, which utilizes local information to construct a fast-mixing nonreversible chain in a distributed manner. We show that using LADA, an e-averaging time of Theta(r-1 log(1/isin)) is achievable in a wireless network with transmission radius r.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信