聚类分析的一种新方法

V. Sineglazov, O. Chumachenko, V. Gorbatiuk
{"title":"聚类分析的一种新方法","authors":"V. Sineglazov, O. Chumachenko, V. Gorbatiuk","doi":"10.1109/APUAVD.2017.8308815","DOIUrl":null,"url":null,"abstract":"A new clustering approach that is capable of finding clusters that are separated by some complex hypersurface is proposed. The approach can be useful for performing analysis of big amounts of unlabeled images that can be nowadays easily gathered, in particular by using unmanned aerial vehicle with mounted cameras. The approach is based on “softening” the initial clustering criterion and then using nonlinear optimization to find the optimal hypersurface that separates clusters.","PeriodicalId":163267,"journal":{"name":"2017 IEEE 4th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD)","volume":"263 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new approach in cluster analysis\",\"authors\":\"V. Sineglazov, O. Chumachenko, V. Gorbatiuk\",\"doi\":\"10.1109/APUAVD.2017.8308815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new clustering approach that is capable of finding clusters that are separated by some complex hypersurface is proposed. The approach can be useful for performing analysis of big amounts of unlabeled images that can be nowadays easily gathered, in particular by using unmanned aerial vehicle with mounted cameras. The approach is based on “softening” the initial clustering criterion and then using nonlinear optimization to find the optimal hypersurface that separates clusters.\",\"PeriodicalId\":163267,\"journal\":{\"name\":\"2017 IEEE 4th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD)\",\"volume\":\"263 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 4th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APUAVD.2017.8308815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 4th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APUAVD.2017.8308815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的聚类方法,该方法能够找到被某些复杂超曲面分隔的聚类。该方法可用于对大量未标记图像进行分析,这些图像现在可以很容易地收集到,特别是通过使用装有摄像头的无人驾驶飞行器。该方法是基于“软化”初始聚类准则,然后使用非线性优化来寻找分离聚类的最优超曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new approach in cluster analysis
A new clustering approach that is capable of finding clusters that are separated by some complex hypersurface is proposed. The approach can be useful for performing analysis of big amounts of unlabeled images that can be nowadays easily gathered, in particular by using unmanned aerial vehicle with mounted cameras. The approach is based on “softening” the initial clustering criterion and then using nonlinear optimization to find the optimal hypersurface that separates clusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信