基于支持向量机的北斗多径信号分类

Yahang Qin, Zhenni Li, Shengli Xie, Rong Yuan, Junming Xie
{"title":"基于支持向量机的北斗多径信号分类","authors":"Yahang Qin, Zhenni Li, Shengli Xie, Rong Yuan, Junming Xie","doi":"10.1109/IAI55780.2022.9976714","DOIUrl":null,"url":null,"abstract":"In urban environments, multipath can significantly deteriorate the positioning precision of the global navigation satellite system (GNSS). BeiDou navigation satellite system independently established by China plays an important role in the GNSS market. Eliminating the multipath is a crucial problem to contribute to the development of the BeiDou navigation satellite system (BDS). In this paper, we use the machine learning algorithm support vector machine (SVM) to classify the BeiDou satellite signals into line-of-sight (LOS), multipath, and non-line-of-sight signals (NLOS). Single and multiple feature classification of the signal was performed by using the carrier to noise ratio (C/N0), elevation angle (ELE), and pseudorange residuals (PR). We use SVM with radial basis function (RBF), which can effectively handle nonlinear and high-dimensional data, and this feature is just suitable for the effective classification of nonlinear and high-dimensional data in this paper. It is a challenging problem to select the appropriate features from receiver independent exchange (RINEX) format signals for the diverse forms of signals output from BeiDou signal receivers. In this paper, we analyze the selected features C/N0, ELE, and PR, and it is proved that they can be used for BeiDou satellite signal classification. In the experimental study, BeiDou satellite signals are collected with static receivers in an urban canyon. The experimental results show that the highest classification accuracy of 78.48% is achieved based on the PR using a single feature aspect. The SVM classification accuracy based on feature C/N0, ELE, and PR can reach 87.22%. The classification using multiple features is significantly higher than that of single feature.","PeriodicalId":138951,"journal":{"name":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BDS Multipath Signal Classification Using Support Vector Machine\",\"authors\":\"Yahang Qin, Zhenni Li, Shengli Xie, Rong Yuan, Junming Xie\",\"doi\":\"10.1109/IAI55780.2022.9976714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In urban environments, multipath can significantly deteriorate the positioning precision of the global navigation satellite system (GNSS). BeiDou navigation satellite system independently established by China plays an important role in the GNSS market. Eliminating the multipath is a crucial problem to contribute to the development of the BeiDou navigation satellite system (BDS). In this paper, we use the machine learning algorithm support vector machine (SVM) to classify the BeiDou satellite signals into line-of-sight (LOS), multipath, and non-line-of-sight signals (NLOS). Single and multiple feature classification of the signal was performed by using the carrier to noise ratio (C/N0), elevation angle (ELE), and pseudorange residuals (PR). We use SVM with radial basis function (RBF), which can effectively handle nonlinear and high-dimensional data, and this feature is just suitable for the effective classification of nonlinear and high-dimensional data in this paper. It is a challenging problem to select the appropriate features from receiver independent exchange (RINEX) format signals for the diverse forms of signals output from BeiDou signal receivers. In this paper, we analyze the selected features C/N0, ELE, and PR, and it is proved that they can be used for BeiDou satellite signal classification. In the experimental study, BeiDou satellite signals are collected with static receivers in an urban canyon. The experimental results show that the highest classification accuracy of 78.48% is achieved based on the PR using a single feature aspect. The SVM classification accuracy based on feature C/N0, ELE, and PR can reach 87.22%. The classification using multiple features is significantly higher than that of single feature.\",\"PeriodicalId\":138951,\"journal\":{\"name\":\"2022 4th International Conference on Industrial Artificial Intelligence (IAI)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Industrial Artificial Intelligence (IAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI55780.2022.9976714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI55780.2022.9976714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在城市环境下,多路径会显著降低全球卫星导航系统(GNSS)的定位精度。中国自主建立的北斗卫星导航系统在全球导航卫星系统市场中占有重要地位。消除多径是北斗卫星导航系统发展的关键问题。在本文中,我们使用机器学习算法支持向量机(SVM)将北斗卫星信号分为视距信号(LOS)、多径信号和非视距信号(NLOS)。利用载波噪声比(C/N0)、仰角(ELE)和伪距残差(PR)对信号进行单特征和多特征分类。我们使用径向基函数(RBF)支持向量机,它可以有效地处理非线性和高维数据,这一特性正好适合本文对非线性和高维数据进行有效分类。针对北斗信号接收机输出的各种形式的信号,如何从接收机独立交换(RINEX)格式信号中选择合适的特征是一个具有挑战性的问题。本文对选取的C/N0、ELE和PR特征进行了分析,证明了它们可以用于北斗卫星信号分类。在实验研究中,采用静态接收机在城市峡谷中采集北斗卫星信号。实验结果表明,基于单个特征方面的PR分类准确率最高,达到78.48%。基于特征C/N0、ELE和PR的SVM分类准确率可达87.22%。多特征的分类效果明显高于单特征的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BDS Multipath Signal Classification Using Support Vector Machine
In urban environments, multipath can significantly deteriorate the positioning precision of the global navigation satellite system (GNSS). BeiDou navigation satellite system independently established by China plays an important role in the GNSS market. Eliminating the multipath is a crucial problem to contribute to the development of the BeiDou navigation satellite system (BDS). In this paper, we use the machine learning algorithm support vector machine (SVM) to classify the BeiDou satellite signals into line-of-sight (LOS), multipath, and non-line-of-sight signals (NLOS). Single and multiple feature classification of the signal was performed by using the carrier to noise ratio (C/N0), elevation angle (ELE), and pseudorange residuals (PR). We use SVM with radial basis function (RBF), which can effectively handle nonlinear and high-dimensional data, and this feature is just suitable for the effective classification of nonlinear and high-dimensional data in this paper. It is a challenging problem to select the appropriate features from receiver independent exchange (RINEX) format signals for the diverse forms of signals output from BeiDou signal receivers. In this paper, we analyze the selected features C/N0, ELE, and PR, and it is proved that they can be used for BeiDou satellite signal classification. In the experimental study, BeiDou satellite signals are collected with static receivers in an urban canyon. The experimental results show that the highest classification accuracy of 78.48% is achieved based on the PR using a single feature aspect. The SVM classification accuracy based on feature C/N0, ELE, and PR can reach 87.22%. The classification using multiple features is significantly higher than that of single feature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信