基于支持向量机的2型糖尿病倾向评分匹配

Silviatul Hasanah, B. Otok, Purhadi
{"title":"基于支持向量机的2型糖尿病倾向评分匹配","authors":"Silviatul Hasanah, B. Otok, Purhadi","doi":"10.1109/IBIOMED.2018.8534909","DOIUrl":null,"url":null,"abstract":"Randomization in the treatment and control group was not appropriate for non-experimental studies because it will produced bias estimation of treatment effects. In addition to randomization, the presence of confounding variables will also produce bias estimation of treatment effect. This bias estimation of treatment effect can be handled using Propensity Score (PS) method. One of the methods that have been developed from the propensity score is Propensity Score Matching (PSM). In this study, the propensity score is estimated using Support Vector Machine (SVM). Confounding variables that used in this study is exercise activities. The purpose of this study is to apply the PSM using SVM method and calculate the accuracy and Percent Bias Reduction (PBR) on type 2 Diabetes mellitus (DM) disease complications case. The data used in this study is type 2 Diabetes Mellitus (DM) patients data treated at Pasuruan regional public hospital on March 2017. The results of PSM-SVM analysis shows that there are 40 of 96 patients with type 2 DM who have enough exercise activities paired with patients who have less exercise activities. Average Treatment of Treated (ATT) estimation result shows that exercise activity variables (Z) has significant effect on disease complication variables (Y). The accuracy of the PSM-SVM method is 70.00% and 16.65% of the bias can be reduced.","PeriodicalId":217196,"journal":{"name":"2018 2nd International Conference on Biomedical Engineering (IBIOMED)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Propensity Score Matching Using Support Vector Machine in Case of Type 2 Diabetes Mellitus (DM)\",\"authors\":\"Silviatul Hasanah, B. Otok, Purhadi\",\"doi\":\"10.1109/IBIOMED.2018.8534909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Randomization in the treatment and control group was not appropriate for non-experimental studies because it will produced bias estimation of treatment effects. In addition to randomization, the presence of confounding variables will also produce bias estimation of treatment effect. This bias estimation of treatment effect can be handled using Propensity Score (PS) method. One of the methods that have been developed from the propensity score is Propensity Score Matching (PSM). In this study, the propensity score is estimated using Support Vector Machine (SVM). Confounding variables that used in this study is exercise activities. The purpose of this study is to apply the PSM using SVM method and calculate the accuracy and Percent Bias Reduction (PBR) on type 2 Diabetes mellitus (DM) disease complications case. The data used in this study is type 2 Diabetes Mellitus (DM) patients data treated at Pasuruan regional public hospital on March 2017. The results of PSM-SVM analysis shows that there are 40 of 96 patients with type 2 DM who have enough exercise activities paired with patients who have less exercise activities. Average Treatment of Treated (ATT) estimation result shows that exercise activity variables (Z) has significant effect on disease complication variables (Y). The accuracy of the PSM-SVM method is 70.00% and 16.65% of the bias can be reduced.\",\"PeriodicalId\":217196,\"journal\":{\"name\":\"2018 2nd International Conference on Biomedical Engineering (IBIOMED)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 2nd International Conference on Biomedical Engineering (IBIOMED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IBIOMED.2018.8534909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 2nd International Conference on Biomedical Engineering (IBIOMED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBIOMED.2018.8534909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

治疗组和对照组的随机化不适合用于非实验研究,因为它会产生治疗效果的偏倚估计。除随机化外,混杂变量的存在也会对治疗效果产生偏倚估计。这种治疗效果的偏倚估计可以使用倾向评分(PS)方法来处理。从倾向得分发展而来的一种方法是倾向得分匹配(PSM)。在本研究中,倾向得分是使用支持向量机(SVM)估计。在这项研究中使用的混杂变量是运动活动。本研究的目的是将支持向量机方法应用于PSM,计算2型糖尿病(DM)疾病并发症病例的准确率和百分偏倚减少(PBR)。本研究使用的数据为2017年3月在Pasuruan地区公立医院治疗的2型糖尿病(DM)患者数据。PSM-SVM分析结果显示,96例2型DM患者中有40例运动活动充足的患者与运动活动较少的患者配对。经治疗的平均治疗(ATT)估计结果显示,运动活动变量(Z)对疾病并发症变量(Y)有显著影响,PSM-SVM方法的准确率为70.00%,可减少16.65%的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Propensity Score Matching Using Support Vector Machine in Case of Type 2 Diabetes Mellitus (DM)
Randomization in the treatment and control group was not appropriate for non-experimental studies because it will produced bias estimation of treatment effects. In addition to randomization, the presence of confounding variables will also produce bias estimation of treatment effect. This bias estimation of treatment effect can be handled using Propensity Score (PS) method. One of the methods that have been developed from the propensity score is Propensity Score Matching (PSM). In this study, the propensity score is estimated using Support Vector Machine (SVM). Confounding variables that used in this study is exercise activities. The purpose of this study is to apply the PSM using SVM method and calculate the accuracy and Percent Bias Reduction (PBR) on type 2 Diabetes mellitus (DM) disease complications case. The data used in this study is type 2 Diabetes Mellitus (DM) patients data treated at Pasuruan regional public hospital on March 2017. The results of PSM-SVM analysis shows that there are 40 of 96 patients with type 2 DM who have enough exercise activities paired with patients who have less exercise activities. Average Treatment of Treated (ATT) estimation result shows that exercise activity variables (Z) has significant effect on disease complication variables (Y). The accuracy of the PSM-SVM method is 70.00% and 16.65% of the bias can be reduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信