具有共价交联的圆形和折叠碳纳米管力学性能的原子模拟

Arun Thapa, A. Volkov
{"title":"具有共价交联的圆形和折叠碳纳米管力学性能的原子模拟","authors":"Arun Thapa, A. Volkov","doi":"10.1115/IMECE2018-88172","DOIUrl":null,"url":null,"abstract":"Stretching properties of single-walled carbon nanotubes (CNTs) of large diameters are studied in atomistic simulations. The simulations are performed based on the AIREBO empirical interatomic potential for three types of CNTs: Nanotubes with circular cross section, permanently collapsed nanotubes with “dog-bone”-shaped cross sections, and collapsed nanotubes with intra-tube covalent cross-links. In the last case, the cross-links between parallel quasi-planar parts of the nanotube wall are assumed to be formed by interstitial carbon atoms. The calculated equilibrium shape of collapsed nanotubes and the threshold diameter for permanently collapsed CNTs are found to agree with existing literature data. Elastic modulus, maximum stress, and strain at failure are calculated for zigzag CNTs with the equivalent diameter up to 6.27 nm in the temperature range from 5 K to 500 K. The simulations show that these mechanical properties only moderately depend on the diameter of circular CNTs. For collapsed CNTs with and without cross-links, the mechanical properties are practically independent of the CNT diameter for nanotubes with diameters larger than 4.7 nm. The elastic modulus and maximum stress of collapsed nanotubes are found to be smaller than those for the equivalent circular CNTs. The intra-tube cross-linking increases the elastic modulus and strength of collapsed CNTs in up to 50% compared to corresponding collapsed CNTs without cross-links, but reduces the breaking strain. Thermal softening of CNTs with increasing temperature in the range from 100 K to 500 K induces a decrease in the elastic modulus and maximum stress in about 12–33%.","PeriodicalId":375383,"journal":{"name":"Volume 9: Mechanics of Solids, Structures, and Fluids","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomistic Simulations of Mechanical Properties of Circular and Collapsed Carbon Nanotubes With Covalent Cross-Links\",\"authors\":\"Arun Thapa, A. Volkov\",\"doi\":\"10.1115/IMECE2018-88172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stretching properties of single-walled carbon nanotubes (CNTs) of large diameters are studied in atomistic simulations. The simulations are performed based on the AIREBO empirical interatomic potential for three types of CNTs: Nanotubes with circular cross section, permanently collapsed nanotubes with “dog-bone”-shaped cross sections, and collapsed nanotubes with intra-tube covalent cross-links. In the last case, the cross-links between parallel quasi-planar parts of the nanotube wall are assumed to be formed by interstitial carbon atoms. The calculated equilibrium shape of collapsed nanotubes and the threshold diameter for permanently collapsed CNTs are found to agree with existing literature data. Elastic modulus, maximum stress, and strain at failure are calculated for zigzag CNTs with the equivalent diameter up to 6.27 nm in the temperature range from 5 K to 500 K. The simulations show that these mechanical properties only moderately depend on the diameter of circular CNTs. For collapsed CNTs with and without cross-links, the mechanical properties are practically independent of the CNT diameter for nanotubes with diameters larger than 4.7 nm. The elastic modulus and maximum stress of collapsed nanotubes are found to be smaller than those for the equivalent circular CNTs. The intra-tube cross-linking increases the elastic modulus and strength of collapsed CNTs in up to 50% compared to corresponding collapsed CNTs without cross-links, but reduces the breaking strain. Thermal softening of CNTs with increasing temperature in the range from 100 K to 500 K induces a decrease in the elastic modulus and maximum stress in about 12–33%.\",\"PeriodicalId\":375383,\"journal\":{\"name\":\"Volume 9: Mechanics of Solids, Structures, and Fluids\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Mechanics of Solids, Structures, and Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-88172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Mechanics of Solids, Structures, and Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-88172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过原子模拟研究了大直径单壁碳纳米管(CNTs)的拉伸性能。基于AIREBO经验原子间电位对三种类型的碳纳米管进行了模拟:圆形截面的碳纳米管、具有“狗骨”形状截面的永久折叠碳纳米管和具有管内共价交联的折叠碳纳米管。在最后一种情况下,假设纳米管壁平行准平面部分之间的交联是由间隙碳原子形成的。计算得到的折叠纳米管的平衡形状和永久折叠纳米管的阈值直径与已有文献数据一致。计算了等效直径为6.27 nm的之字形碳纳米管在5 ~ 500 K温度范围内的弹性模量、最大应力和破坏应变。模拟结果表明,这些力学性能仅适度依赖于圆形碳纳米管的直径。对于有或没有交联的折叠CNTs,对于直径大于4.7 nm的纳米管,其力学性能实际上与碳纳米管直径无关。折叠后的纳米管弹性模量和最大应力均小于等效的圆形碳纳米管。与未交联的CNTs相比,经管内交联可使CNTs的弹性模量和强度提高50%,但可降低断裂应变。在100 ~ 500 K范围内,随着温度的升高,CNTs热软化后的弹性模量和最大应力降低了约12 ~ 33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atomistic Simulations of Mechanical Properties of Circular and Collapsed Carbon Nanotubes With Covalent Cross-Links
Stretching properties of single-walled carbon nanotubes (CNTs) of large diameters are studied in atomistic simulations. The simulations are performed based on the AIREBO empirical interatomic potential for three types of CNTs: Nanotubes with circular cross section, permanently collapsed nanotubes with “dog-bone”-shaped cross sections, and collapsed nanotubes with intra-tube covalent cross-links. In the last case, the cross-links between parallel quasi-planar parts of the nanotube wall are assumed to be formed by interstitial carbon atoms. The calculated equilibrium shape of collapsed nanotubes and the threshold diameter for permanently collapsed CNTs are found to agree with existing literature data. Elastic modulus, maximum stress, and strain at failure are calculated for zigzag CNTs with the equivalent diameter up to 6.27 nm in the temperature range from 5 K to 500 K. The simulations show that these mechanical properties only moderately depend on the diameter of circular CNTs. For collapsed CNTs with and without cross-links, the mechanical properties are practically independent of the CNT diameter for nanotubes with diameters larger than 4.7 nm. The elastic modulus and maximum stress of collapsed nanotubes are found to be smaller than those for the equivalent circular CNTs. The intra-tube cross-linking increases the elastic modulus and strength of collapsed CNTs in up to 50% compared to corresponding collapsed CNTs without cross-links, but reduces the breaking strain. Thermal softening of CNTs with increasing temperature in the range from 100 K to 500 K induces a decrease in the elastic modulus and maximum stress in about 12–33%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信