CT图像自动感兴趣区域识别与分类:在肾囊肿中的应用

D. Boukerroui, W. Touhami, J. Cocquerez
{"title":"CT图像自动感兴趣区域识别与分类:在肾囊肿中的应用","authors":"D. Boukerroui, W. Touhami, J. Cocquerez","doi":"10.1109/IPTA.2008.4743770","DOIUrl":null,"url":null,"abstract":"Recently, we proposed an original approach, in a statistical framework, for fully automatic detection of pathological kidneys in 2D CT images. In this paper, we propose some important improvements of our previous work and an attempt to classify the identified regions into pathological vs non pathological. To this end, we propose two indexing methods to construct the signatures coding the relevant information. The index is then used in a supervised classification technique to discriminate the kidney images. These approaches are tested on more than 500 clinically acquired images and promising results are obtained.","PeriodicalId":384072,"journal":{"name":"2008 First Workshops on Image Processing Theory, Tools and Applications","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automatic regions of interest identification and classification in CT images: Application to kidney cysts\",\"authors\":\"D. Boukerroui, W. Touhami, J. Cocquerez\",\"doi\":\"10.1109/IPTA.2008.4743770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, we proposed an original approach, in a statistical framework, for fully automatic detection of pathological kidneys in 2D CT images. In this paper, we propose some important improvements of our previous work and an attempt to classify the identified regions into pathological vs non pathological. To this end, we propose two indexing methods to construct the signatures coding the relevant information. The index is then used in a supervised classification technique to discriminate the kidney images. These approaches are tested on more than 500 clinically acquired images and promising results are obtained.\",\"PeriodicalId\":384072,\"journal\":{\"name\":\"2008 First Workshops on Image Processing Theory, Tools and Applications\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 First Workshops on Image Processing Theory, Tools and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2008.4743770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First Workshops on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2008.4743770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

最近,我们在统计框架中提出了一种新颖的方法,用于二维CT图像中病理肾脏的全自动检测。在本文中,我们提出了一些重要的改进我们以前的工作,并尝试将识别的区域分为病理与非病理。为此,我们提出了两种索引方法来构建编码相关信息的签名。然后将该指数用于监督分类技术来区分肾脏图像。这些方法在500多张临床获得的图像上进行了测试,并获得了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic regions of interest identification and classification in CT images: Application to kidney cysts
Recently, we proposed an original approach, in a statistical framework, for fully automatic detection of pathological kidneys in 2D CT images. In this paper, we propose some important improvements of our previous work and an attempt to classify the identified regions into pathological vs non pathological. To this end, we propose two indexing methods to construct the signatures coding the relevant information. The index is then used in a supervised classification technique to discriminate the kidney images. These approaches are tested on more than 500 clinically acquired images and promising results are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信