通过抽取和同伦延拓的proony系统

Dmitry Batenkov
{"title":"通过抽取和同伦延拓的proony系统","authors":"Dmitry Batenkov","doi":"10.1145/2631948.2631961","DOIUrl":null,"url":null,"abstract":"We consider polynomial systems of Prony type, appearing in many areas of mathematics. Their robust numerical solution is considered to be difficult, especially in \"near-colliding\" situations. We transform the nonlinear part of the Prony system into a Hankel-type polynomial system. Combining this representation with a recently discovered \"decimation\" technique, we present an algorithm which applies homotopy continuation on a sequence of modified Hankel-type systems as above. In this way, we are able to solve for the nonlinear variables of the original system with high accuracy when the data is perturbed.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Prony systems via decimation and homotopy continuation\",\"authors\":\"Dmitry Batenkov\",\"doi\":\"10.1145/2631948.2631961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider polynomial systems of Prony type, appearing in many areas of mathematics. Their robust numerical solution is considered to be difficult, especially in \\\"near-colliding\\\" situations. We transform the nonlinear part of the Prony system into a Hankel-type polynomial system. Combining this representation with a recently discovered \\\"decimation\\\" technique, we present an algorithm which applies homotopy continuation on a sequence of modified Hankel-type systems as above. In this way, we are able to solve for the nonlinear variables of the original system with high accuracy when the data is perturbed.\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2631948.2631961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2631948.2631961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们考虑出现在许多数学领域的多项式系统。它们的鲁棒数值解被认为是困难的,特别是在“近碰撞”的情况下。我们将proony系统的非线性部分转化为一个hankel型多项式系统。将这种表示与最近发现的“抽取”技术相结合,我们提出了一种对上述修改的hankel型系统序列应用同伦延拓的算法。这样,当数据受到扰动时,我们就可以高精度地求解原系统的非线性变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prony systems via decimation and homotopy continuation
We consider polynomial systems of Prony type, appearing in many areas of mathematics. Their robust numerical solution is considered to be difficult, especially in "near-colliding" situations. We transform the nonlinear part of the Prony system into a Hankel-type polynomial system. Combining this representation with a recently discovered "decimation" technique, we present an algorithm which applies homotopy continuation on a sequence of modified Hankel-type systems as above. In this way, we are able to solve for the nonlinear variables of the original system with high accuracy when the data is perturbed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信