文本引导图像绘制

Ying Gao, Qing Zhu
{"title":"文本引导图像绘制","authors":"Ying Gao, Qing Zhu","doi":"10.1109/ITOEC53115.2022.9734369","DOIUrl":null,"url":null,"abstract":"Given a corrupted image, image inpainting aims to complete the image and outputs a plausible result. When we complete the missing region, we always borrow the information from a known area, which is aimless and causes unsatisfactory results. In our daily life, some other information is often used for corrupted images, such as text descriptions. Therefore, we introduce the use of text information to guide image inpainting. To fulfill this task, We introduce an inpainting model named TGNet (Text-Guided Inpainting Network). We provide a text-image gated feature fusion module to fuse text feature and image feature deeply. A mask attention module is proposed to enhance the consistency of known areas and the repaired area. Extensive quantitative and qualitative experiments on three public datasets with captions demonstrate the effectiveness of our method.","PeriodicalId":127300,"journal":{"name":"2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Text-Guided Image Inpainting\",\"authors\":\"Ying Gao, Qing Zhu\",\"doi\":\"10.1109/ITOEC53115.2022.9734369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a corrupted image, image inpainting aims to complete the image and outputs a plausible result. When we complete the missing region, we always borrow the information from a known area, which is aimless and causes unsatisfactory results. In our daily life, some other information is often used for corrupted images, such as text descriptions. Therefore, we introduce the use of text information to guide image inpainting. To fulfill this task, We introduce an inpainting model named TGNet (Text-Guided Inpainting Network). We provide a text-image gated feature fusion module to fuse text feature and image feature deeply. A mask attention module is proposed to enhance the consistency of known areas and the repaired area. Extensive quantitative and qualitative experiments on three public datasets with captions demonstrate the effectiveness of our method.\",\"PeriodicalId\":127300,\"journal\":{\"name\":\"2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITOEC53115.2022.9734369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITOEC53115.2022.9734369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个损坏的图像,图像修复的目的是完成图像并输出一个可信的结果。在补全缺失区域时,我们总是从已知区域借用信息,这是没有目的的,导致结果不理想。在我们的日常生活中,一些其他的信息经常被用于损坏的图像,比如文字描述。因此,我们介绍了在绘画中使用文字信息来引导图像。为了完成这个任务,我们引入了一个名为TGNet (Text-Guided inpainting Network)的绘图模型。提出了文本-图像门控特征融合模块,实现了文本特征与图像特征的深度融合。为了提高已知区域和修复区域的一致性,提出了一个掩模关注模块。在三个带有标题的公共数据集上进行了大量的定量和定性实验,证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text-Guided Image Inpainting
Given a corrupted image, image inpainting aims to complete the image and outputs a plausible result. When we complete the missing region, we always borrow the information from a known area, which is aimless and causes unsatisfactory results. In our daily life, some other information is often used for corrupted images, such as text descriptions. Therefore, we introduce the use of text information to guide image inpainting. To fulfill this task, We introduce an inpainting model named TGNet (Text-Guided Inpainting Network). We provide a text-image gated feature fusion module to fuse text feature and image feature deeply. A mask attention module is proposed to enhance the consistency of known areas and the repaired area. Extensive quantitative and qualitative experiments on three public datasets with captions demonstrate the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信