用于车道应用的RFID辅助SINS综合导航系统

Qi Wang, Chang-song Yang, Shaoen Wu
{"title":"用于车道应用的RFID辅助SINS综合导航系统","authors":"Qi Wang, Chang-song Yang, Shaoen Wu","doi":"10.1504/ijes.2020.10029468","DOIUrl":null,"url":null,"abstract":"To improve the lane vehicle position accuracy, RFID technology is applied to correct the position of the SINS irregularly with label positioning. The acceleration data of the vehicle in three directions is measured by the accelerometers of the inertial measurement unit; the attitude matrix is updated in real time using the angular velocity of the gyroscope output space, and the acceleration component is transformed into the geographic coordinate system, and the acceleration of the inertial measurement unit. The data is subjected to an integral operation process to obtain a spatial displacement value of the vehicle. The real-time updating algorithm of the attitude matrix and the processing of the inertial measurement unit signal are presented. The quaternion-based algorithm is used to solve the attitude matrix as well as updating the coordinate system of the inertial navigation attitude matrix in real time. The Hilbert-Huang transform is used to filter the acceleration signal to solve the integrator saturation problem caused by the low-frequency component of the acceleration signal. The EMD algorithm based on the continuous root mean square error is applied in rejecting the low-frequency components in the signal. The simulation experiments show that the system can be reliable and high precision.","PeriodicalId":412308,"journal":{"name":"Int. J. Embed. Syst.","volume":"302 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"RFID aided SINS integrated navigation system for lane applications\",\"authors\":\"Qi Wang, Chang-song Yang, Shaoen Wu\",\"doi\":\"10.1504/ijes.2020.10029468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the lane vehicle position accuracy, RFID technology is applied to correct the position of the SINS irregularly with label positioning. The acceleration data of the vehicle in three directions is measured by the accelerometers of the inertial measurement unit; the attitude matrix is updated in real time using the angular velocity of the gyroscope output space, and the acceleration component is transformed into the geographic coordinate system, and the acceleration of the inertial measurement unit. The data is subjected to an integral operation process to obtain a spatial displacement value of the vehicle. The real-time updating algorithm of the attitude matrix and the processing of the inertial measurement unit signal are presented. The quaternion-based algorithm is used to solve the attitude matrix as well as updating the coordinate system of the inertial navigation attitude matrix in real time. The Hilbert-Huang transform is used to filter the acceleration signal to solve the integrator saturation problem caused by the low-frequency component of the acceleration signal. The EMD algorithm based on the continuous root mean square error is applied in rejecting the low-frequency components in the signal. The simulation experiments show that the system can be reliable and high precision.\",\"PeriodicalId\":412308,\"journal\":{\"name\":\"Int. J. Embed. Syst.\",\"volume\":\"302 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Embed. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijes.2020.10029468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijes.2020.10029468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了提高车道车辆的定位精度,采用RFID技术对捷联惯导系统进行不规律的标签定位校正。通过惯性测量单元的加速度计测量车辆在三个方向上的加速度数据;利用陀螺仪输出空间的角速度实时更新姿态矩阵,并将加速度分量转换为地理坐标系,与惯性测量单元的加速度相对应。对数据进行积分运算,得到车辆的空间位移值。给出了姿态矩阵的实时更新算法和惯性测量单元信号的处理。采用基于四元数的算法求解姿态矩阵,实时更新惯性导航姿态矩阵的坐标系。利用Hilbert-Huang变换对加速度信号进行滤波,解决了加速度信号低频分量引起的积分器饱和问题。采用基于连续均方根误差的EMD算法抑制信号中的低频成分。仿真实验表明,该系统工作可靠,精度高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RFID aided SINS integrated navigation system for lane applications
To improve the lane vehicle position accuracy, RFID technology is applied to correct the position of the SINS irregularly with label positioning. The acceleration data of the vehicle in three directions is measured by the accelerometers of the inertial measurement unit; the attitude matrix is updated in real time using the angular velocity of the gyroscope output space, and the acceleration component is transformed into the geographic coordinate system, and the acceleration of the inertial measurement unit. The data is subjected to an integral operation process to obtain a spatial displacement value of the vehicle. The real-time updating algorithm of the attitude matrix and the processing of the inertial measurement unit signal are presented. The quaternion-based algorithm is used to solve the attitude matrix as well as updating the coordinate system of the inertial navigation attitude matrix in real time. The Hilbert-Huang transform is used to filter the acceleration signal to solve the integrator saturation problem caused by the low-frequency component of the acceleration signal. The EMD algorithm based on the continuous root mean square error is applied in rejecting the low-frequency components in the signal. The simulation experiments show that the system can be reliable and high precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信