G. Emdin, A. Kulikov, Ivan Mihajlin, Nikita Slezkin
{"title":"校验校验的CNF编码","authors":"G. Emdin, A. Kulikov, Ivan Mihajlin, Nikita Slezkin","doi":"10.48550/arXiv.2203.01082","DOIUrl":null,"url":null,"abstract":"The minimum number of clauses in a CNF representation of the parity function x 1 ⊕ x 2 ⊕ · · · ⊕ x n is 2 n − 1 . One can obtain a more compact CNF encoding by using non-deterministic variables (also known as guess or auxiliary variables). In this paper, we prove the following lower bounds, that almost match known upper bounds, on the number m of clauses and the maximum width k of clauses: 1) if there are at most s auxiliary variables, then m ≥ Ω (cid:0) 2 n/ ( s +1) /n (cid:1) and k ≥ n/ ( s + 1); 2) the minimum number of clauses is at least 3 n . We derive the first two bounds from the Satisfiability Coding Lemma due to Paturi, Pudlák, and Zane using a tight connection between CNF encodings and depth-3 circuits. In particular, we show that lower bounds on the size of a CNF encoding of a Boolean function imply depth-3 circuit lower bounds for this function. of","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CNF Encodings of Parity\",\"authors\":\"G. Emdin, A. Kulikov, Ivan Mihajlin, Nikita Slezkin\",\"doi\":\"10.48550/arXiv.2203.01082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The minimum number of clauses in a CNF representation of the parity function x 1 ⊕ x 2 ⊕ · · · ⊕ x n is 2 n − 1 . One can obtain a more compact CNF encoding by using non-deterministic variables (also known as guess or auxiliary variables). In this paper, we prove the following lower bounds, that almost match known upper bounds, on the number m of clauses and the maximum width k of clauses: 1) if there are at most s auxiliary variables, then m ≥ Ω (cid:0) 2 n/ ( s +1) /n (cid:1) and k ≥ n/ ( s + 1); 2) the minimum number of clauses is at least 3 n . We derive the first two bounds from the Satisfiability Coding Lemma due to Paturi, Pudlák, and Zane using a tight connection between CNF encodings and depth-3 circuits. In particular, we show that lower bounds on the size of a CNF encoding of a Boolean function imply depth-3 circuit lower bounds for this function. of\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2203.01082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.01082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
奇偶函数x 1⊕x 2⊕···⊕x n的CNF表示中的最小子句数为2n−1。可以通过使用非确定性变量(也称为猜测变量或辅助变量)获得更紧凑的CNF编码。本文证明了子句数m和子句最大宽度k的下界几乎与已知的上界相匹配:1)如果辅助变量最多为s,则m≥Ω (cid:0) 2n / (s +1) /n (cid:1)且k≥n/ (s +1);2)最小条款数至少为3n。我们使用CNF编码和深度-3电路之间的紧密连接,从Paturi, Pudlák和Zane的可满足编码引理中推导出前两个界。特别是,我们证明了布尔函数的CNF编码大小的下界意味着该函数的深度-3电路下界。的
The minimum number of clauses in a CNF representation of the parity function x 1 ⊕ x 2 ⊕ · · · ⊕ x n is 2 n − 1 . One can obtain a more compact CNF encoding by using non-deterministic variables (also known as guess or auxiliary variables). In this paper, we prove the following lower bounds, that almost match known upper bounds, on the number m of clauses and the maximum width k of clauses: 1) if there are at most s auxiliary variables, then m ≥ Ω (cid:0) 2 n/ ( s +1) /n (cid:1) and k ≥ n/ ( s + 1); 2) the minimum number of clauses is at least 3 n . We derive the first two bounds from the Satisfiability Coding Lemma due to Paturi, Pudlák, and Zane using a tight connection between CNF encodings and depth-3 circuits. In particular, we show that lower bounds on the size of a CNF encoding of a Boolean function imply depth-3 circuit lower bounds for this function. of