曝光融合图像的感知质量评价

Borivoje e Tasikj, T. Kartalov, Z. Ivanovski
{"title":"曝光融合图像的感知质量评价","authors":"Borivoje e Tasikj, T. Kartalov, Z. Ivanovski","doi":"10.1109/EUROCON.2019.8861987","DOIUrl":null,"url":null,"abstract":"In this paper, a new approach for automated perceptual quality evaluation for pyramid-based exposure fusion is presented. A machine learning method, using neural network training is used. The obtained results are verified using both established objective measures, and subjective evaluation of the same set, acquired by mean opinion score survey on multiple human subjects. The main advantage of the proposed approach is that it can grade the perceptual quality of the fused image even prior to the completing of the fusing process, in the stage of pyramid decomposition. This also allows implementation of a mechanism that could stop the pyramid decomposition in the most optimal pyramid level, in order to achieve the highest quality output image.","PeriodicalId":232097,"journal":{"name":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perceptual Quality Evaluation for Exposure Fusion Image\",\"authors\":\"Borivoje e Tasikj, T. Kartalov, Z. Ivanovski\",\"doi\":\"10.1109/EUROCON.2019.8861987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new approach for automated perceptual quality evaluation for pyramid-based exposure fusion is presented. A machine learning method, using neural network training is used. The obtained results are verified using both established objective measures, and subjective evaluation of the same set, acquired by mean opinion score survey on multiple human subjects. The main advantage of the proposed approach is that it can grade the perceptual quality of the fused image even prior to the completing of the fusing process, in the stage of pyramid decomposition. This also allows implementation of a mechanism that could stop the pyramid decomposition in the most optimal pyramid level, in order to achieve the highest quality output image.\",\"PeriodicalId\":232097,\"journal\":{\"name\":\"IEEE EUROCON 2019 -18th International Conference on Smart Technologies\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE EUROCON 2019 -18th International Conference on Smart Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROCON.2019.8861987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2019.8861987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于金字塔的曝光融合自动感知质量评价方法。一种机器学习方法,使用神经网络进行训练。所获得的结果使用既定的客观度量和同一集的主观评价来验证,这些评价是通过对多个人类受试者的平均意见得分调查获得的。该方法的主要优点是,它可以在融合过程完成之前,即金字塔分解阶段,对融合图像的感知质量进行分级。这也允许实现一种机制,可以停止金字塔分解在最优的金字塔水平,以实现最高质量的输出图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perceptual Quality Evaluation for Exposure Fusion Image
In this paper, a new approach for automated perceptual quality evaluation for pyramid-based exposure fusion is presented. A machine learning method, using neural network training is used. The obtained results are verified using both established objective measures, and subjective evaluation of the same set, acquired by mean opinion score survey on multiple human subjects. The main advantage of the proposed approach is that it can grade the perceptual quality of the fused image even prior to the completing of the fusing process, in the stage of pyramid decomposition. This also allows implementation of a mechanism that could stop the pyramid decomposition in the most optimal pyramid level, in order to achieve the highest quality output image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信