D. R, V. S, A. S, Srinivethaa Pongiannan, Sabareshwaran M, Hareesh T
{"title":"使用网络技术优化皮肤癌检测","authors":"D. R, V. S, A. S, Srinivethaa Pongiannan, Sabareshwaran M, Hareesh T","doi":"10.1109/STCR55312.2022.10009329","DOIUrl":null,"url":null,"abstract":"Damage to the skin is a leading cause of death worldwide. In the event that it is not immediately handled and dissected, it might acquire into interact with numerous organs and tissues. The high turnover of skin cells exposed to sunlight has similar consequences. It is hoped that having early, observable confirmation from a trustworthy automated system for validating skin sores will save time, effort, and human lives. An effective method of treating skin cancer is to combine in-depth information with image alteration. This hints at a mechanical method of depicting skin disorders. We can see the limits and scope of the primary convolutional mind links. The dataset includes information on nine clinical types of skin damage, including actinic keratosis, basal cell carcinoma, benign keratosis, dermatofibroma, melanoma, nevus, seborrhea keratosis, squamous cell carcinoma, and vascular wounds. Our aim is to use a convolutional neural network to categorize a model that classifies skin diseases into distinct groups. The diagnostic method is based on the ideas of thorough image collection and extensive learning. Various picture enhancement methods have also contributed to a rise in the total number of photographs available. The precision of the collecting chores is also addressed by the trade learning method.","PeriodicalId":338691,"journal":{"name":"2022 Smart Technologies, Communication and Robotics (STCR)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Skin Cancer Detection using Web Technology\",\"authors\":\"D. R, V. S, A. S, Srinivethaa Pongiannan, Sabareshwaran M, Hareesh T\",\"doi\":\"10.1109/STCR55312.2022.10009329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Damage to the skin is a leading cause of death worldwide. In the event that it is not immediately handled and dissected, it might acquire into interact with numerous organs and tissues. The high turnover of skin cells exposed to sunlight has similar consequences. It is hoped that having early, observable confirmation from a trustworthy automated system for validating skin sores will save time, effort, and human lives. An effective method of treating skin cancer is to combine in-depth information with image alteration. This hints at a mechanical method of depicting skin disorders. We can see the limits and scope of the primary convolutional mind links. The dataset includes information on nine clinical types of skin damage, including actinic keratosis, basal cell carcinoma, benign keratosis, dermatofibroma, melanoma, nevus, seborrhea keratosis, squamous cell carcinoma, and vascular wounds. Our aim is to use a convolutional neural network to categorize a model that classifies skin diseases into distinct groups. The diagnostic method is based on the ideas of thorough image collection and extensive learning. Various picture enhancement methods have also contributed to a rise in the total number of photographs available. The precision of the collecting chores is also addressed by the trade learning method.\",\"PeriodicalId\":338691,\"journal\":{\"name\":\"2022 Smart Technologies, Communication and Robotics (STCR)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Smart Technologies, Communication and Robotics (STCR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STCR55312.2022.10009329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Smart Technologies, Communication and Robotics (STCR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STCR55312.2022.10009329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimized Skin Cancer Detection using Web Technology
Damage to the skin is a leading cause of death worldwide. In the event that it is not immediately handled and dissected, it might acquire into interact with numerous organs and tissues. The high turnover of skin cells exposed to sunlight has similar consequences. It is hoped that having early, observable confirmation from a trustworthy automated system for validating skin sores will save time, effort, and human lives. An effective method of treating skin cancer is to combine in-depth information with image alteration. This hints at a mechanical method of depicting skin disorders. We can see the limits and scope of the primary convolutional mind links. The dataset includes information on nine clinical types of skin damage, including actinic keratosis, basal cell carcinoma, benign keratosis, dermatofibroma, melanoma, nevus, seborrhea keratosis, squamous cell carcinoma, and vascular wounds. Our aim is to use a convolutional neural network to categorize a model that classifies skin diseases into distinct groups. The diagnostic method is based on the ideas of thorough image collection and extensive learning. Various picture enhancement methods have also contributed to a rise in the total number of photographs available. The precision of the collecting chores is also addressed by the trade learning method.