实三次的第一同调是由直线生成的

S. Finashin, V. Kharlamov
{"title":"实三次的第一同调是由直线生成的","authors":"S. Finashin, V. Kharlamov","doi":"10.1090/conm/772/15485","DOIUrl":null,"url":null,"abstract":"We suggest a short proof of O.Benoist and O.Wittenberg theorem (arXiv:1907.10859) which states that for each real non-singular cubic hypersurface $X$ of dimension $\\ge 2$ the real lines on $X$ generate the whole group $H_1(X(\\Bbb R);\\Bbb Z/2)$.","PeriodicalId":296603,"journal":{"name":"Topology, Geometry, and Dynamics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The first homology of a real cubic is generated by lines\",\"authors\":\"S. Finashin, V. Kharlamov\",\"doi\":\"10.1090/conm/772/15485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We suggest a short proof of O.Benoist and O.Wittenberg theorem (arXiv:1907.10859) which states that for each real non-singular cubic hypersurface $X$ of dimension $\\\\ge 2$ the real lines on $X$ generate the whole group $H_1(X(\\\\Bbb R);\\\\Bbb Z/2)$.\",\"PeriodicalId\":296603,\"journal\":{\"name\":\"Topology, Geometry, and Dynamics\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology, Geometry, and Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/772/15485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology, Geometry, and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/772/15485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文给出了o.b inoist定理和O.Wittenberg定理(arXiv:1907.10859)的一个简短证明,证明了对于每一个维数为$\ \ge 2的实非奇异三次超曲面$X$, $X$上的实直线生成整个群$H_1(X(\Bbb R);\Bbb Z/2)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The first homology of a real cubic is generated by lines
We suggest a short proof of O.Benoist and O.Wittenberg theorem (arXiv:1907.10859) which states that for each real non-singular cubic hypersurface $X$ of dimension $\ge 2$ the real lines on $X$ generate the whole group $H_1(X(\Bbb R);\Bbb Z/2)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信