从不变测度到轨道等价,通过局部有限群

Julien Melleray, Simon Robert
{"title":"从不变测度到轨道等价,通过局部有限群","authors":"Julien Melleray, Simon Robert","doi":"10.5802/ahl.165","DOIUrl":null,"url":null,"abstract":"We give a new proof of a theorem of Giordano, Putnam and Skau characterizing orbit equivalence of minimal homeomorphisms of the Cantor space in terms of their sets of invariant Borel probability measures. The proof is based on a strengtehning of a theorem of Krieger concerning minimal actions of certain locally finite groups of homeomorphisms, and we also give a new proof of the Giordano--Putnam--Skau characterization of orbit equivalence for these actions.","PeriodicalId":192307,"journal":{"name":"Annales Henri Lebesgue","volume":"36 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"From invariant measures to orbit equivalence, via locally finite groups\",\"authors\":\"Julien Melleray, Simon Robert\",\"doi\":\"10.5802/ahl.165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a new proof of a theorem of Giordano, Putnam and Skau characterizing orbit equivalence of minimal homeomorphisms of the Cantor space in terms of their sets of invariant Borel probability measures. The proof is based on a strengtehning of a theorem of Krieger concerning minimal actions of certain locally finite groups of homeomorphisms, and we also give a new proof of the Giordano--Putnam--Skau characterization of orbit equivalence for these actions.\",\"PeriodicalId\":192307,\"journal\":{\"name\":\"Annales Henri Lebesgue\",\"volume\":\"36 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Lebesgue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/ahl.165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Lebesgue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ahl.165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文给出了Giordano, Putnam和Skau用不变Borel概率测度集表征Cantor空间极小同胚轨道等价的定理的一个新的证明。本文在加强Krieger关于同纯局部有限群最小作用的定理的基础上,给出了这些作用的轨道等价的Giordano—Putnam—Skau刻画的一个新的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From invariant measures to orbit equivalence, via locally finite groups
We give a new proof of a theorem of Giordano, Putnam and Skau characterizing orbit equivalence of minimal homeomorphisms of the Cantor space in terms of their sets of invariant Borel probability measures. The proof is based on a strengtehning of a theorem of Krieger concerning minimal actions of certain locally finite groups of homeomorphisms, and we also give a new proof of the Giordano--Putnam--Skau characterization of orbit equivalence for these actions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信