利用基于深度学习的方法理解CLSM图像中胶体纳米片的变形运动

H. Fujioka, Jarupat Sawangphol, Shinya Anraku, N. Miyamoto, Akinori Hidaka, H. Kano
{"title":"利用基于深度学习的方法理解CLSM图像中胶体纳米片的变形运动","authors":"H. Fujioka, Jarupat Sawangphol, Shinya Anraku, N. Miyamoto, Akinori Hidaka, H. Kano","doi":"10.1109/ICARCV.2018.8581084","DOIUrl":null,"url":null,"abstract":"This paper considers a problem of understanding deformation motion of colloidal nanosheets from a set of confocal laser scanning microscopy (CLSM) images corrupted by noises. First, we present a robust method for detecting nanosheet objects from noisy CLSM images by introducing the deep learning-based approach. Then, we develop a method for understanding motions of nanosheet objects in colloid liquid. Such a method is constituted by introducing the idea of the so-called gradient-based feature descriptor, in which the local and global deformation motions are effectively visualized. The performance is demonstrated by some experimental studies.","PeriodicalId":395380,"journal":{"name":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Understanding Deformation Motion of Colloidal Nanosheets from CLSM Images using Deep Learning-based Approach\",\"authors\":\"H. Fujioka, Jarupat Sawangphol, Shinya Anraku, N. Miyamoto, Akinori Hidaka, H. Kano\",\"doi\":\"10.1109/ICARCV.2018.8581084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a problem of understanding deformation motion of colloidal nanosheets from a set of confocal laser scanning microscopy (CLSM) images corrupted by noises. First, we present a robust method for detecting nanosheet objects from noisy CLSM images by introducing the deep learning-based approach. Then, we develop a method for understanding motions of nanosheet objects in colloid liquid. Such a method is constituted by introducing the idea of the so-called gradient-based feature descriptor, in which the local and global deformation motions are effectively visualized. The performance is demonstrated by some experimental studies.\",\"PeriodicalId\":395380,\"journal\":{\"name\":\"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCV.2018.8581084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2018.8581084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了从一组被噪声破坏的共聚焦激光扫描显微镜(CLSM)图像中理解胶体纳米片变形运动的问题。首先,我们通过引入基于深度学习的方法,提出了一种从噪声CLSM图像中检测纳米片目标的鲁棒方法。然后,我们开发了一种理解纳米片物体在胶体液体中的运动的方法。该方法通过引入基于梯度的特征描述符的思想构成,有效地将局部和全局变形运动可视化。一些实验研究证明了这种性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding Deformation Motion of Colloidal Nanosheets from CLSM Images using Deep Learning-based Approach
This paper considers a problem of understanding deformation motion of colloidal nanosheets from a set of confocal laser scanning microscopy (CLSM) images corrupted by noises. First, we present a robust method for detecting nanosheet objects from noisy CLSM images by introducing the deep learning-based approach. Then, we develop a method for understanding motions of nanosheet objects in colloid liquid. Such a method is constituted by introducing the idea of the so-called gradient-based feature descriptor, in which the local and global deformation motions are effectively visualized. The performance is demonstrated by some experimental studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信