{"title":"自然图像中稀疏性的生物学特征","authors":"Laurent Udo Perrinet","doi":"10.1109/EUVIP.2016.7764592","DOIUrl":null,"url":null,"abstract":"Natural images follow statistics inherited by the structure of our physical (visual) environment. In particular, a prominent facet of this structure is that images can be described by a relatively sparse number of features. We designed a sparse coding algorithm biologically-inspired by the architecture of the primary visual cortex. We show here that coefficients of this representation exhibit a power-law distribution. For each image, the exponent of this distribution characterizes sparseness and varies from image to image. To investigate the role of this sparseness, we designed a new class of random textured stimuli with a controlled sparseness value inspired by measurements of natural images. Then, we provide with a method to synthesize random textures images with a given sparseness statistics that match that of some class of natural images and provide perspectives for their use in neurophysiology.","PeriodicalId":136980,"journal":{"name":"2016 6th European Workshop on Visual Information Processing (EUVIP)","volume":"71 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Biologically-inspired characterization of sparseness in natural images\",\"authors\":\"Laurent Udo Perrinet\",\"doi\":\"10.1109/EUVIP.2016.7764592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural images follow statistics inherited by the structure of our physical (visual) environment. In particular, a prominent facet of this structure is that images can be described by a relatively sparse number of features. We designed a sparse coding algorithm biologically-inspired by the architecture of the primary visual cortex. We show here that coefficients of this representation exhibit a power-law distribution. For each image, the exponent of this distribution characterizes sparseness and varies from image to image. To investigate the role of this sparseness, we designed a new class of random textured stimuli with a controlled sparseness value inspired by measurements of natural images. Then, we provide with a method to synthesize random textures images with a given sparseness statistics that match that of some class of natural images and provide perspectives for their use in neurophysiology.\",\"PeriodicalId\":136980,\"journal\":{\"name\":\"2016 6th European Workshop on Visual Information Processing (EUVIP)\",\"volume\":\"71 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th European Workshop on Visual Information Processing (EUVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUVIP.2016.7764592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2016.7764592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biologically-inspired characterization of sparseness in natural images
Natural images follow statistics inherited by the structure of our physical (visual) environment. In particular, a prominent facet of this structure is that images can be described by a relatively sparse number of features. We designed a sparse coding algorithm biologically-inspired by the architecture of the primary visual cortex. We show here that coefficients of this representation exhibit a power-law distribution. For each image, the exponent of this distribution characterizes sparseness and varies from image to image. To investigate the role of this sparseness, we designed a new class of random textured stimuli with a controlled sparseness value inspired by measurements of natural images. Then, we provide with a method to synthesize random textures images with a given sparseness statistics that match that of some class of natural images and provide perspectives for their use in neurophysiology.