奥地利微观种群模型的平均场近似

M. Bicher, N. Popper
{"title":"奥地利微观种群模型的平均场近似","authors":"M. Bicher, N. Popper","doi":"10.11128/SNE.28.SN.10432","DOIUrl":null,"url":null,"abstract":". Verification and validation of large agent bases models is a complicated process - to check for full functionality, the simulation has to be executed var-ious times, which takes both time and computational resources. In this discussion-paper we present an approach that could generally improve this process, applied on an agent-based population model for Austria. A so-called mean-field model in this case a partial differential equation (PDE) is used for this aim. Execution of the PDE simulation only takes a very short time, hence the mean-field model can provide a fast prospect on results, behaviour and sensitivity of the agent-based model used.","PeriodicalId":262785,"journal":{"name":"Simul. Notes Eur.","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Mean-Field Approximation of a Microscopic Population Model for Austria\",\"authors\":\"M. Bicher, N. Popper\",\"doi\":\"10.11128/SNE.28.SN.10432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Verification and validation of large agent bases models is a complicated process - to check for full functionality, the simulation has to be executed var-ious times, which takes both time and computational resources. In this discussion-paper we present an approach that could generally improve this process, applied on an agent-based population model for Austria. A so-called mean-field model in this case a partial differential equation (PDE) is used for this aim. Execution of the PDE simulation only takes a very short time, hence the mean-field model can provide a fast prospect on results, behaviour and sensitivity of the agent-based model used.\",\"PeriodicalId\":262785,\"journal\":{\"name\":\"Simul. Notes Eur.\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simul. Notes Eur.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11128/SNE.28.SN.10432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simul. Notes Eur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11128/SNE.28.SN.10432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

. 验证和验证大型代理库模型是一个复杂的过程-为了检查完整的功能,必须执行多次仿真,这既需要时间又需要计算资源。在这篇讨论论文中,我们提出了一种可以普遍改进这一过程的方法,并应用于奥地利基于主体的人口模型。所谓的平均场模型,在这种情况下,偏微分方程(PDE)被用于此目的。PDE仿真的执行只需要很短的时间,因此平均场模型可以快速预测所使用的基于agent的模型的结果、行为和灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mean-Field Approximation of a Microscopic Population Model for Austria
. Verification and validation of large agent bases models is a complicated process - to check for full functionality, the simulation has to be executed var-ious times, which takes both time and computational resources. In this discussion-paper we present an approach that could generally improve this process, applied on an agent-based population model for Austria. A so-called mean-field model in this case a partial differential equation (PDE) is used for this aim. Execution of the PDE simulation only takes a very short time, hence the mean-field model can provide a fast prospect on results, behaviour and sensitivity of the agent-based model used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信