一个以标签为中心的web对象分类判别模型

Lina Yao, Quan Z. Sheng
{"title":"一个以标签为中心的web对象分类判别模型","authors":"Lina Yao, Quan Z. Sheng","doi":"10.1145/2396761.2398612","DOIUrl":null,"url":null,"abstract":"This paper studies web object classification problem with the novel exploration of social tags. More and more web objects are increasingly annotated with human interpretable labels (i.e., tags), which can be considered as an auxiliary attribute to assist the object classification. Automatically classifying web objects into manageable semantic categories has long been a fundamental pre-process for indexing, browsing, searching, and mining heterogeneous web objects. However, such heterogeneous web objects often suffer from a lack of easy-extractable and uniform descriptive features. In this paper, we propose a discriminative tag-centric model for web object classification by jointly modeling the objects category labels and their corresponding social tags and un-coding the relevance among social tags. Our approach is based on recent techniques for learning large-scale discriminative models. We conduct experiments to validate our approach using real-life data. The results show the feasibility and good performance of our approach.","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A tag-centric discriminative model for web objects classification\",\"authors\":\"Lina Yao, Quan Z. Sheng\",\"doi\":\"10.1145/2396761.2398612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies web object classification problem with the novel exploration of social tags. More and more web objects are increasingly annotated with human interpretable labels (i.e., tags), which can be considered as an auxiliary attribute to assist the object classification. Automatically classifying web objects into manageable semantic categories has long been a fundamental pre-process for indexing, browsing, searching, and mining heterogeneous web objects. However, such heterogeneous web objects often suffer from a lack of easy-extractable and uniform descriptive features. In this paper, we propose a discriminative tag-centric model for web object classification by jointly modeling the objects category labels and their corresponding social tags and un-coding the relevance among social tags. Our approach is based on recent techniques for learning large-scale discriminative models. We conduct experiments to validate our approach using real-life data. The results show the feasibility and good performance of our approach.\",\"PeriodicalId\":313414,\"journal\":{\"name\":\"Proceedings of the 21st ACM international conference on Information and knowledge management\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM international conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2396761.2398612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2398612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文通过对社会标签的新颖探索来研究web对象分类问题。越来越多的web对象被标注为人类可解释的标签(即标签),可以将其视为辅助对象分类的辅助属性。自动将web对象分类为可管理的语义类别一直是索引、浏览、搜索和挖掘异构web对象的基本预处理。然而,这种异构的web对象往往缺乏易于提取和统一的描述性特征。本文提出了一种以判别标签为中心的web对象分类模型,该模型通过对对象类别标签及其对应的社会标签进行联合建模,并对社会标签之间的相关性进行反编码。我们的方法是基于学习大规模判别模型的最新技术。我们利用现实生活中的数据进行实验来验证我们的方法。结果表明了该方法的可行性和良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A tag-centric discriminative model for web objects classification
This paper studies web object classification problem with the novel exploration of social tags. More and more web objects are increasingly annotated with human interpretable labels (i.e., tags), which can be considered as an auxiliary attribute to assist the object classification. Automatically classifying web objects into manageable semantic categories has long been a fundamental pre-process for indexing, browsing, searching, and mining heterogeneous web objects. However, such heterogeneous web objects often suffer from a lack of easy-extractable and uniform descriptive features. In this paper, we propose a discriminative tag-centric model for web object classification by jointly modeling the objects category labels and their corresponding social tags and un-coding the relevance among social tags. Our approach is based on recent techniques for learning large-scale discriminative models. We conduct experiments to validate our approach using real-life data. The results show the feasibility and good performance of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信