基于接口聚类的智能合约相似性评估

Monika Di Angelo, G. Salzer
{"title":"基于接口聚类的智能合约相似性评估","authors":"Monika Di Angelo, G. Salzer","doi":"10.1109/TrustCom50675.2020.00261","DOIUrl":null,"url":null,"abstract":"Like most programs, smart contracts offer their functionality via entry points that constitute the interface. Interface standards, e.g. for tokens contracts, foster interoperability. Ethereum is the most prominent platform for smart contracts. The number of contract deployments approaches 30 million, corresponding to roughly 300 000 distinct contract codes. In view of these numbers, it is necessary to develop automated methods for classifying contracts regarding their purpose, if one aims at a qualitative and quantitative understanding of what blockchain applications are used for at large. We approach the task by considering contracts as similar if their interfaces are. We encode interfaces and their interrelationships as graphs and explore several algorithms regarding their ability to find clusters of functionally similar contracts. Our evaluation of the quality of clustering relies on a ground truth of token and wallet contracts identified in earlier work. Our analysis is based on the bytecodes deployed on the main chain of Ethereum up to block 10.5 million, mined on July 21, 2020.","PeriodicalId":221956,"journal":{"name":"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Assessing the Similarity of Smart Contracts by Clustering their Interfaces\",\"authors\":\"Monika Di Angelo, G. Salzer\",\"doi\":\"10.1109/TrustCom50675.2020.00261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Like most programs, smart contracts offer their functionality via entry points that constitute the interface. Interface standards, e.g. for tokens contracts, foster interoperability. Ethereum is the most prominent platform for smart contracts. The number of contract deployments approaches 30 million, corresponding to roughly 300 000 distinct contract codes. In view of these numbers, it is necessary to develop automated methods for classifying contracts regarding their purpose, if one aims at a qualitative and quantitative understanding of what blockchain applications are used for at large. We approach the task by considering contracts as similar if their interfaces are. We encode interfaces and their interrelationships as graphs and explore several algorithms regarding their ability to find clusters of functionally similar contracts. Our evaluation of the quality of clustering relies on a ground truth of token and wallet contracts identified in earlier work. Our analysis is based on the bytecodes deployed on the main chain of Ethereum up to block 10.5 million, mined on July 21, 2020.\",\"PeriodicalId\":221956,\"journal\":{\"name\":\"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TrustCom50675.2020.00261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TrustCom50675.2020.00261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

像大多数程序一样,智能合约通过构成接口的入口点提供功能。接口标准,例如代币合约,促进互操作性。以太坊是智能合约最突出的平台。合同部署的数量接近3000万,对应大约30万个不同的合同代码。鉴于这些数字,如果人们的目标是对区块链应用程序的总体用途进行定性和定量理解,就有必要开发自动化的方法来对合同进行分类。如果契约的接口是相似的,我们就认为它们是相似的。我们将接口及其相互关系编码为图,并探索了几种关于它们找到功能相似契约簇的能力的算法。我们对聚类质量的评估依赖于早期工作中确定的令牌和钱包合约的基本事实。我们的分析是基于部署在以太坊主链上的字节码,截至2020年7月21日开采的1050万个区块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the Similarity of Smart Contracts by Clustering their Interfaces
Like most programs, smart contracts offer their functionality via entry points that constitute the interface. Interface standards, e.g. for tokens contracts, foster interoperability. Ethereum is the most prominent platform for smart contracts. The number of contract deployments approaches 30 million, corresponding to roughly 300 000 distinct contract codes. In view of these numbers, it is necessary to develop automated methods for classifying contracts regarding their purpose, if one aims at a qualitative and quantitative understanding of what blockchain applications are used for at large. We approach the task by considering contracts as similar if their interfaces are. We encode interfaces and their interrelationships as graphs and explore several algorithms regarding their ability to find clusters of functionally similar contracts. Our evaluation of the quality of clustering relies on a ground truth of token and wallet contracts identified in earlier work. Our analysis is based on the bytecodes deployed on the main chain of Ethereum up to block 10.5 million, mined on July 21, 2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信