{"title":"多边形环境中多边形运动规划问题的近二次界","authors":"D. Halperin, M. Sharir","doi":"10.1109/SFCS.1993.366849","DOIUrl":null,"url":null,"abstract":"We consider the problem of planning the motion of an arbitrary k-sided polygonal robot B, free to translate and rotate in a polygonal environment V bounded by n edges. We show that the combinatorial complexity of a single connected component of the free configuration space of B is k/sup 3/n/sup 2/2/sup O(log(2/3)/ n). This is a significant improvement of the naive bound O((kn)/sup 3/); when k is constant, which is often the case in practice, this yields a near-quadratic bound on the complexity of such a component, which almost settles (in this special case) a long-standing conjecture regarding the complexity of a single cell in a three-dimensional arrangement of surfaces. We also present an algorithm that constructs a single component of the free configuration space of B in time O(n/sup 2+/spl epsi//), for any /spl epsi/>0, assuming B has a constant number of sides. This algorithm, combined with some standard techniques in motion planning, yields a solution to the underlying motion planning problem, within the same asymptotic running time.<<ETX>>","PeriodicalId":253303,"journal":{"name":"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Near-quadratic bounds for the motion planning problem for a polygon in a polygonal environment\",\"authors\":\"D. Halperin, M. Sharir\",\"doi\":\"10.1109/SFCS.1993.366849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of planning the motion of an arbitrary k-sided polygonal robot B, free to translate and rotate in a polygonal environment V bounded by n edges. We show that the combinatorial complexity of a single connected component of the free configuration space of B is k/sup 3/n/sup 2/2/sup O(log(2/3)/ n). This is a significant improvement of the naive bound O((kn)/sup 3/); when k is constant, which is often the case in practice, this yields a near-quadratic bound on the complexity of such a component, which almost settles (in this special case) a long-standing conjecture regarding the complexity of a single cell in a three-dimensional arrangement of surfaces. We also present an algorithm that constructs a single component of the free configuration space of B in time O(n/sup 2+/spl epsi//), for any /spl epsi/>0, assuming B has a constant number of sides. This algorithm, combined with some standard techniques in motion planning, yields a solution to the underlying motion planning problem, within the same asymptotic running time.<<ETX>>\",\"PeriodicalId\":253303,\"journal\":{\"name\":\"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1993.366849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1993.366849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Near-quadratic bounds for the motion planning problem for a polygon in a polygonal environment
We consider the problem of planning the motion of an arbitrary k-sided polygonal robot B, free to translate and rotate in a polygonal environment V bounded by n edges. We show that the combinatorial complexity of a single connected component of the free configuration space of B is k/sup 3/n/sup 2/2/sup O(log(2/3)/ n). This is a significant improvement of the naive bound O((kn)/sup 3/); when k is constant, which is often the case in practice, this yields a near-quadratic bound on the complexity of such a component, which almost settles (in this special case) a long-standing conjecture regarding the complexity of a single cell in a three-dimensional arrangement of surfaces. We also present an algorithm that constructs a single component of the free configuration space of B in time O(n/sup 2+/spl epsi//), for any /spl epsi/>0, assuming B has a constant number of sides. This algorithm, combined with some standard techniques in motion planning, yields a solution to the underlying motion planning problem, within the same asymptotic running time.<>