最优参数密度估计最小的分析距离措施

A. Hanselmann, O. C. Schrempf, U. Hanebeck
{"title":"最优参数密度估计最小的分析距离措施","authors":"A. Hanselmann, O. C. Schrempf, U. Hanebeck","doi":"10.1109/ICIF.2007.4408100","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel approach to parametric density estimation from given samples. The samples are treated as a parametric density function by means of a Dirac mixture, which allows for applying analytic optimization techniques. The method is based on minimizing a distance measure between the integral of the approximation function and the empirical cumulative distribution function (EDF) of the given samples, where the EDF is represented by the integral of the Dirac mixture. Since this minimization problem cannot be solved directly in general, a progression technique is applied. Increased performance of the approach in comparison to iterative maximum likelihood approaches is shown in simulations.","PeriodicalId":298941,"journal":{"name":"2007 10th International Conference on Information Fusion","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Optimal parametric density estimation by minimizing an analytic distance measure\",\"authors\":\"A. Hanselmann, O. C. Schrempf, U. Hanebeck\",\"doi\":\"10.1109/ICIF.2007.4408100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel approach to parametric density estimation from given samples. The samples are treated as a parametric density function by means of a Dirac mixture, which allows for applying analytic optimization techniques. The method is based on minimizing a distance measure between the integral of the approximation function and the empirical cumulative distribution function (EDF) of the given samples, where the EDF is represented by the integral of the Dirac mixture. Since this minimization problem cannot be solved directly in general, a progression technique is applied. Increased performance of the approach in comparison to iterative maximum likelihood approaches is shown in simulations.\",\"PeriodicalId\":298941,\"journal\":{\"name\":\"2007 10th International Conference on Information Fusion\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 10th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2007.4408100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2007.4408100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种从给定样本进行参数密度估计的新方法。通过Dirac混合物将样品作为参数密度函数处理,这允许应用分析优化技术。该方法基于最小化近似函数的积分与给定样本的经验累积分布函数(EDF)之间的距离度量,其中EDF由Dirac混合物的积分表示。由于这个最小化问题一般不能直接解决,所以采用了递进技术。仿真结果表明,与迭代最大似然方法相比,该方法的性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal parametric density estimation by minimizing an analytic distance measure
In this paper, we present a novel approach to parametric density estimation from given samples. The samples are treated as a parametric density function by means of a Dirac mixture, which allows for applying analytic optimization techniques. The method is based on minimizing a distance measure between the integral of the approximation function and the empirical cumulative distribution function (EDF) of the given samples, where the EDF is represented by the integral of the Dirac mixture. Since this minimization problem cannot be solved directly in general, a progression technique is applied. Increased performance of the approach in comparison to iterative maximum likelihood approaches is shown in simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信