基于可分解图形模型的不完全数据贝叶斯顺序学习

M. Kuroda, Z. Geng, N. Niki
{"title":"基于可分解图形模型的不完全数据贝叶斯顺序学习","authors":"M. Kuroda, Z. Geng, N. Niki","doi":"10.5183/JJSCS1988.14.11","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the Bayesian sequential learning on probabilities from incomplete data in decomposable graphical models. We give exact formulas of the posterior distribution, and the posterior mean and the posterior second moment based on a hyper Dirichlet prior distribution and an incomplete observation. The posterior distribution is usually a mixture hyper Dirichlet distribution when there exist incomplete data. In order to approximate the mixture posterior, we choose a single hyper Dirichlet distribution which has the same mean and the same average variance sum as those of the exact posterior.","PeriodicalId":338719,"journal":{"name":"Journal of the Japanese Society of Computational Statistics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BAYESIAN SEQUENTIAL LEARNING FROM INCOMPLETE DATA ON DECOMPOSABLE GRAPHICAL MODELS\",\"authors\":\"M. Kuroda, Z. Geng, N. Niki\",\"doi\":\"10.5183/JJSCS1988.14.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss the Bayesian sequential learning on probabilities from incomplete data in decomposable graphical models. We give exact formulas of the posterior distribution, and the posterior mean and the posterior second moment based on a hyper Dirichlet prior distribution and an incomplete observation. The posterior distribution is usually a mixture hyper Dirichlet distribution when there exist incomplete data. In order to approximate the mixture posterior, we choose a single hyper Dirichlet distribution which has the same mean and the same average variance sum as those of the exact posterior.\",\"PeriodicalId\":338719,\"journal\":{\"name\":\"Journal of the Japanese Society of Computational Statistics\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japanese Society of Computational Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5183/JJSCS1988.14.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japanese Society of Computational Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5183/JJSCS1988.14.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了可分解图模型中基于不完全数据的概率贝叶斯顺序学习问题。基于超狄利克雷先验分布和不完全观测,给出了后验分布、后验均值和后验秒矩的精确公式。当存在不完全数据时,后验分布通常为混合超狄利克雷分布。为了近似混合后验,我们选择一个单一的超狄利克雷分布,它具有与精确后验相同的均值和平均方差和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BAYESIAN SEQUENTIAL LEARNING FROM INCOMPLETE DATA ON DECOMPOSABLE GRAPHICAL MODELS
In this paper, we discuss the Bayesian sequential learning on probabilities from incomplete data in decomposable graphical models. We give exact formulas of the posterior distribution, and the posterior mean and the posterior second moment based on a hyper Dirichlet prior distribution and an incomplete observation. The posterior distribution is usually a mixture hyper Dirichlet distribution when there exist incomplete data. In order to approximate the mixture posterior, we choose a single hyper Dirichlet distribution which has the same mean and the same average variance sum as those of the exact posterior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信