Saurabh Naik, S. Bale, Tejas Raut Dessai, Gandhar Kamat, M. H. Vasantha
{"title":"0.5V, 225nW, 100 Hz低通滤波器,0.18µm CMOS工艺","authors":"Saurabh Naik, S. Bale, Tejas Raut Dessai, Gandhar Kamat, M. H. Vasantha","doi":"10.1109/IADCC.2015.7154775","DOIUrl":null,"url":null,"abstract":"This paper presents a low power continuous time 2nd order Low Pass Butterworth filter operating at power supply of 0.5V suitably designed for biomedical applications. A 3-dB bandwidth of 100 Hz using technology node of 0.18μm is achieved. The operational transconductance amplifier is a significant building block in continuous time filter design. To achieve necessary voltage headroom a pseudo-differential architecture is used to design bulk driven transconductor. In contrast, to the gate-driven OTA bulk-driven have the ability to operate over a wide input range. The output common mode voltage of the transconductor is set by a Common Mode Feedback (CMFB) circuit. The simulation results show that the filter has a peak-to-peak signal swing of 150mV (differential) for 1% THD, a dynamic range of 74.62 dB and consumes a total power of 0.225μW when operating at a supply voltage of 0.5V. The Figure of Merit (FOM) achieved by the filter is 0.055 fJ, lowest among similar low-voltage filters found in the literature.","PeriodicalId":123908,"journal":{"name":"2015 IEEE International Advance Computing Conference (IACC)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"0.5V, 225nW, 100 Hz Low pass filter in 0.18µm CMOS process\",\"authors\":\"Saurabh Naik, S. Bale, Tejas Raut Dessai, Gandhar Kamat, M. H. Vasantha\",\"doi\":\"10.1109/IADCC.2015.7154775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a low power continuous time 2nd order Low Pass Butterworth filter operating at power supply of 0.5V suitably designed for biomedical applications. A 3-dB bandwidth of 100 Hz using technology node of 0.18μm is achieved. The operational transconductance amplifier is a significant building block in continuous time filter design. To achieve necessary voltage headroom a pseudo-differential architecture is used to design bulk driven transconductor. In contrast, to the gate-driven OTA bulk-driven have the ability to operate over a wide input range. The output common mode voltage of the transconductor is set by a Common Mode Feedback (CMFB) circuit. The simulation results show that the filter has a peak-to-peak signal swing of 150mV (differential) for 1% THD, a dynamic range of 74.62 dB and consumes a total power of 0.225μW when operating at a supply voltage of 0.5V. The Figure of Merit (FOM) achieved by the filter is 0.055 fJ, lowest among similar low-voltage filters found in the literature.\",\"PeriodicalId\":123908,\"journal\":{\"name\":\"2015 IEEE International Advance Computing Conference (IACC)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Advance Computing Conference (IACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IADCC.2015.7154775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2015.7154775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
0.5V, 225nW, 100 Hz Low pass filter in 0.18µm CMOS process
This paper presents a low power continuous time 2nd order Low Pass Butterworth filter operating at power supply of 0.5V suitably designed for biomedical applications. A 3-dB bandwidth of 100 Hz using technology node of 0.18μm is achieved. The operational transconductance amplifier is a significant building block in continuous time filter design. To achieve necessary voltage headroom a pseudo-differential architecture is used to design bulk driven transconductor. In contrast, to the gate-driven OTA bulk-driven have the ability to operate over a wide input range. The output common mode voltage of the transconductor is set by a Common Mode Feedback (CMFB) circuit. The simulation results show that the filter has a peak-to-peak signal swing of 150mV (differential) for 1% THD, a dynamic range of 74.62 dB and consumes a total power of 0.225μW when operating at a supply voltage of 0.5V. The Figure of Merit (FOM) achieved by the filter is 0.055 fJ, lowest among similar low-voltage filters found in the literature.