电力设备红外热成像诊断技术中的方法

H. Cui, Y. Xu, Jundong Zeng, Zhong Tang
{"title":"电力设备红外热成像诊断技术中的方法","authors":"H. Cui, Y. Xu, Jundong Zeng, Zhong Tang","doi":"10.1109/ICEIEC.2013.6835498","DOIUrl":null,"url":null,"abstract":"Infrared thermography, which has been widely used, is an important electrical equipment monitoring and fault diagnosis technology. It has two key steps about infrared thermal image processing and artificial intelligence diagnosis faults. In order to improve the accuracy of diagnosing electrical equipment thermal fault, the algorithms of denoising, segmentation and feature extraction in image processing, the BP and RBF network model of neural networks for intelligent diagnosis are discussed with the specific experimental conditions, the advantages and disadvantages of the various technologies and the improved methods are pointed out.","PeriodicalId":419767,"journal":{"name":"2013 IEEE 4th International Conference on Electronics Information and Emergency Communication","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"The methods in infrared thermal imaging diagnosis technology of power equipment\",\"authors\":\"H. Cui, Y. Xu, Jundong Zeng, Zhong Tang\",\"doi\":\"10.1109/ICEIEC.2013.6835498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infrared thermography, which has been widely used, is an important electrical equipment monitoring and fault diagnosis technology. It has two key steps about infrared thermal image processing and artificial intelligence diagnosis faults. In order to improve the accuracy of diagnosing electrical equipment thermal fault, the algorithms of denoising, segmentation and feature extraction in image processing, the BP and RBF network model of neural networks for intelligent diagnosis are discussed with the specific experimental conditions, the advantages and disadvantages of the various technologies and the improved methods are pointed out.\",\"PeriodicalId\":419767,\"journal\":{\"name\":\"2013 IEEE 4th International Conference on Electronics Information and Emergency Communication\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 4th International Conference on Electronics Information and Emergency Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEIEC.2013.6835498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 4th International Conference on Electronics Information and Emergency Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIEC.2013.6835498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

红外热像仪是一种重要的电气设备监测与故障诊断技术,已得到广泛应用。它包括红外热图像处理和人工智能故障诊断两个关键步骤。为了提高电气设备热故障诊断的准确性,结合具体的实验条件,讨论了图像处理中的去噪、分割和特征提取算法,以及用于智能诊断的神经网络中的BP和RBF网络模型,指出了各种技术的优缺点和改进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The methods in infrared thermal imaging diagnosis technology of power equipment
Infrared thermography, which has been widely used, is an important electrical equipment monitoring and fault diagnosis technology. It has two key steps about infrared thermal image processing and artificial intelligence diagnosis faults. In order to improve the accuracy of diagnosing electrical equipment thermal fault, the algorithms of denoising, segmentation and feature extraction in image processing, the BP and RBF network model of neural networks for intelligent diagnosis are discussed with the specific experimental conditions, the advantages and disadvantages of the various technologies and the improved methods are pointed out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信