基于心理任务的脑机接口识别个性

Ramaswamy Palaniappan
{"title":"基于心理任务的脑机接口识别个性","authors":"Ramaswamy Palaniappan","doi":"10.1109/ICISIP.2005.1619442","DOIUrl":null,"url":null,"abstract":"In recent years, numerous Brain Computer Interface (BCI) technologies have been developed to assist the disabled. In this paper, mental task based BCI is proposed for a different purpose: to identify the individuality of a person. The idea is based on the classification of electroencephalogram (EEG) signals recorded when a user thinks of either one or two mental tasks. As different individuals have different thought processes, this idea would be appropriate for individual identification. To increase the inter-subject differences, EEG data from six electrodes are used instead of one. Sixth order autoregressive features are computed from EEG signals and classified by Linear Discriminant classifier using a modified 10 fold cross validation procedure, which gave an average error of 0.95% when tested on 400 EEG patterns from four subjects. Though the method would have to undergo further development to obtain repeatable good accuracy; this initial study has shown the huge potential of the method over existing biometric identification systems as it is impossible to be faked.","PeriodicalId":261916,"journal":{"name":"2005 3rd International Conference on Intelligent Sensing and Information Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Identifying Individuality Using Mental Task Based Brain Computer Interface\",\"authors\":\"Ramaswamy Palaniappan\",\"doi\":\"10.1109/ICISIP.2005.1619442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, numerous Brain Computer Interface (BCI) technologies have been developed to assist the disabled. In this paper, mental task based BCI is proposed for a different purpose: to identify the individuality of a person. The idea is based on the classification of electroencephalogram (EEG) signals recorded when a user thinks of either one or two mental tasks. As different individuals have different thought processes, this idea would be appropriate for individual identification. To increase the inter-subject differences, EEG data from six electrodes are used instead of one. Sixth order autoregressive features are computed from EEG signals and classified by Linear Discriminant classifier using a modified 10 fold cross validation procedure, which gave an average error of 0.95% when tested on 400 EEG patterns from four subjects. Though the method would have to undergo further development to obtain repeatable good accuracy; this initial study has shown the huge potential of the method over existing biometric identification systems as it is impossible to be faked.\",\"PeriodicalId\":261916,\"journal\":{\"name\":\"2005 3rd International Conference on Intelligent Sensing and Information Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 3rd International Conference on Intelligent Sensing and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISIP.2005.1619442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 3rd International Conference on Intelligent Sensing and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIP.2005.1619442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

近年来,许多脑机接口(BCI)技术已经开发出来,以帮助残疾人。在本文中,基于心理任务的脑机接口被提出了一个不同的目的:识别一个人的个性。这个想法是基于当用户想到一个或两个心理任务时记录的脑电图(EEG)信号的分类。由于不同的个体有不同的思维过程,这种观点适用于个体认同。为了增加受试者间的差异,使用了六个电极而不是一个电极的脑电图数据。从脑电信号中计算六阶自回归特征,并采用改进的10倍交叉验证程序对线性判别分类器进行分类,对4个被试的400种脑电信号进行测试,平均误差为0.95%。虽然该方法还需要进一步发展以获得可重复的良好精度;这项初步研究表明,与现有的生物识别系统相比,这种方法具有巨大的潜力,因为它不可能被伪造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying Individuality Using Mental Task Based Brain Computer Interface
In recent years, numerous Brain Computer Interface (BCI) technologies have been developed to assist the disabled. In this paper, mental task based BCI is proposed for a different purpose: to identify the individuality of a person. The idea is based on the classification of electroencephalogram (EEG) signals recorded when a user thinks of either one or two mental tasks. As different individuals have different thought processes, this idea would be appropriate for individual identification. To increase the inter-subject differences, EEG data from six electrodes are used instead of one. Sixth order autoregressive features are computed from EEG signals and classified by Linear Discriminant classifier using a modified 10 fold cross validation procedure, which gave an average error of 0.95% when tested on 400 EEG patterns from four subjects. Though the method would have to undergo further development to obtain repeatable good accuracy; this initial study has shown the huge potential of the method over existing biometric identification systems as it is impossible to be faked.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信