基于DeepLabV3+的轻量级语义分割网络

Yanfei Chen, Chao Zhou, Zhangchen Yan, Tiange Huang, G. Wang, Jinhu Hu
{"title":"基于DeepLabV3+的轻量级语义分割网络","authors":"Yanfei Chen, Chao Zhou, Zhangchen Yan, Tiange Huang, G. Wang, Jinhu Hu","doi":"10.1109/AICIT55386.2022.9930215","DOIUrl":null,"url":null,"abstract":"Embedded mobile devices have limited computing power and insufficient running memory, and it is difficult to deploy high-precision, high-complexity and time-consuming semantic segmentation models. We propose a lightweight semantic segmentation model based on DeepLabV3+. This model optimizes the original DeepLabV3+ model from the perspective of reducing the amount of parameters and ensuring segmentation accuracy. The original backbone network is replaced by the MobileNetV2 network with lower parameters and computational complexity to speed up model inference. We design a 3-branch parallel structure and introduce a Semantic Embedding Module (SEB) to enhance low-level feature map semantic information and pixel point feature representation. The model adds a recurrent cross-attention mechanism module (RCCA) to capture the global correlation of all pixels and obtain dense contextual information. The model achieves 74.81% Mean IoU on the mixed dataset consisting of PASCAL VOC 2012 and Semantic Boundaries Dataset, with a parameter size of 8.27MB. The comprehensive performance of the model is better than that of networks such as SegNet, BiSeNetV2 and ENet, and a good balance is achieved between segmentation accuracy and model complexity.","PeriodicalId":231070,"journal":{"name":"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight Semantic Segmentation Network Based on DeepLabV3+\",\"authors\":\"Yanfei Chen, Chao Zhou, Zhangchen Yan, Tiange Huang, G. Wang, Jinhu Hu\",\"doi\":\"10.1109/AICIT55386.2022.9930215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embedded mobile devices have limited computing power and insufficient running memory, and it is difficult to deploy high-precision, high-complexity and time-consuming semantic segmentation models. We propose a lightweight semantic segmentation model based on DeepLabV3+. This model optimizes the original DeepLabV3+ model from the perspective of reducing the amount of parameters and ensuring segmentation accuracy. The original backbone network is replaced by the MobileNetV2 network with lower parameters and computational complexity to speed up model inference. We design a 3-branch parallel structure and introduce a Semantic Embedding Module (SEB) to enhance low-level feature map semantic information and pixel point feature representation. The model adds a recurrent cross-attention mechanism module (RCCA) to capture the global correlation of all pixels and obtain dense contextual information. The model achieves 74.81% Mean IoU on the mixed dataset consisting of PASCAL VOC 2012 and Semantic Boundaries Dataset, with a parameter size of 8.27MB. The comprehensive performance of the model is better than that of networks such as SegNet, BiSeNetV2 and ENet, and a good balance is achieved between segmentation accuracy and model complexity.\",\"PeriodicalId\":231070,\"journal\":{\"name\":\"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICIT55386.2022.9930215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICIT55386.2022.9930215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

嵌入式移动设备计算能力有限,运行内存不足,难以部署高精度、高复杂度和耗时的语义分割模型。提出了一种基于DeepLabV3+的轻量级语义分割模型。该模型从减少参数数量和保证分割精度的角度对原有DeepLabV3+模型进行了优化。采用参数更低、计算复杂度更低的MobileNetV2网络代替原有骨干网,提高模型推理速度。我们设计了一个三分支并行结构,并引入语义嵌入模块(SEB)来增强底层特征图的语义信息和像素点特征表示。该模型增加了一个循环交叉注意机制模块(RCCA)来捕获所有像素的全局相关性,并获得密集的上下文信息。该模型在由PASCAL VOC 2012和语义边界数据集组成的混合数据集上实现了74.81%的Mean IoU,参数大小为8.27MB。该模型的综合性能优于SegNet、BiSeNetV2和ENet等网络,在分割精度和模型复杂度之间取得了很好的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lightweight Semantic Segmentation Network Based on DeepLabV3+
Embedded mobile devices have limited computing power and insufficient running memory, and it is difficult to deploy high-precision, high-complexity and time-consuming semantic segmentation models. We propose a lightweight semantic segmentation model based on DeepLabV3+. This model optimizes the original DeepLabV3+ model from the perspective of reducing the amount of parameters and ensuring segmentation accuracy. The original backbone network is replaced by the MobileNetV2 network with lower parameters and computational complexity to speed up model inference. We design a 3-branch parallel structure and introduce a Semantic Embedding Module (SEB) to enhance low-level feature map semantic information and pixel point feature representation. The model adds a recurrent cross-attention mechanism module (RCCA) to capture the global correlation of all pixels and obtain dense contextual information. The model achieves 74.81% Mean IoU on the mixed dataset consisting of PASCAL VOC 2012 and Semantic Boundaries Dataset, with a parameter size of 8.27MB. The comprehensive performance of the model is better than that of networks such as SegNet, BiSeNetV2 and ENet, and a good balance is achieved between segmentation accuracy and model complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信