基于监督机器学习的视频流量类型分类

E. Grabs, E. Petersons, A. Ipatovs, Dmitrijs Chulkovs
{"title":"基于监督机器学习的视频流量类型分类","authors":"E. Grabs, E. Petersons, A. Ipatovs, Dmitrijs Chulkovs","doi":"10.1109/IEEECONF49502.2020.9141625","DOIUrl":null,"url":null,"abstract":"The main topic of the article is accuracy evaluation of supervised machine learning algorithms performance applied to real network traffic data. The main task to be solved by supervised learning is classification of video traffic type - streaming (real-time) video or on-demand video (a record). The experiment has been performed for the same video fragment with data filtering and without it. The results have been summarized in form of tables with accuracy assessment for multiple commonly used supervised machine learning algorithms.","PeriodicalId":186085,"journal":{"name":"2020 24th International Conference Electronics","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Supervised Machine Learning based Classification of Video Traffic Types\",\"authors\":\"E. Grabs, E. Petersons, A. Ipatovs, Dmitrijs Chulkovs\",\"doi\":\"10.1109/IEEECONF49502.2020.9141625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main topic of the article is accuracy evaluation of supervised machine learning algorithms performance applied to real network traffic data. The main task to be solved by supervised learning is classification of video traffic type - streaming (real-time) video or on-demand video (a record). The experiment has been performed for the same video fragment with data filtering and without it. The results have been summarized in form of tables with accuracy assessment for multiple commonly used supervised machine learning algorithms.\",\"PeriodicalId\":186085,\"journal\":{\"name\":\"2020 24th International Conference Electronics\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 24th International Conference Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF49502.2020.9141625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 24th International Conference Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF49502.2020.9141625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的主要主题是监督机器学习算法应用于实际网络流量数据的准确性评估。监督学习要解决的主要任务是视频流量类型的分类——流(实时)视频或点播视频(记录)。对同一视频片段进行了数据滤波和不进行数据滤波的实验。结果以表格的形式总结,并对多种常用的有监督机器学习算法进行了准确性评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supervised Machine Learning based Classification of Video Traffic Types
The main topic of the article is accuracy evaluation of supervised machine learning algorithms performance applied to real network traffic data. The main task to be solved by supervised learning is classification of video traffic type - streaming (real-time) video or on-demand video (a record). The experiment has been performed for the same video fragment with data filtering and without it. The results have been summarized in form of tables with accuracy assessment for multiple commonly used supervised machine learning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信