{"title":"非牛顿环境中泰勒气泡上升的三维直接数值模拟","authors":"A. Amani, J. Castro, A. Oliva","doi":"10.23967/WCCM-ECCOMAS.2020.343","DOIUrl":null,"url":null,"abstract":"Three-dimensional numerical simulation of Taylor gas bubbles as primary unites of slug flow patterns rising in non-Newtonian environments is performed in the context of Direct Numerical Simulation (DNS) of the governing equations, where the whole physics of fluid motions will be taken into account. State-of-the-art numerical tools are proposed to tackle the numerical challenges in the DNS study of this problem. E.g. a coupled level-set volume-of-fluid (CLSVOF) interface capturing method is used to solve the topological changes of the interface. Physical formulations are integrated with moving-mesh (MM) technique to decrease the computational cost of 3D simulations and adaptivemesh-refinement (AMR) technique to increase the local accuracy around the interface. The governing equations are solved using High-Performance Computing (HPC) parallel approaches. To the best of the authors’ knowledge, this is the first work dealing with three-dimensional direct numerical simulation of Taylor bubbles rising in non-Newtonian environments.","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Dimensional Direct Numerical Simulation (DNS) of Taylor Bubbles Rising in Non-Newtonian Environments\",\"authors\":\"A. Amani, J. Castro, A. Oliva\",\"doi\":\"10.23967/WCCM-ECCOMAS.2020.343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-dimensional numerical simulation of Taylor gas bubbles as primary unites of slug flow patterns rising in non-Newtonian environments is performed in the context of Direct Numerical Simulation (DNS) of the governing equations, where the whole physics of fluid motions will be taken into account. State-of-the-art numerical tools are proposed to tackle the numerical challenges in the DNS study of this problem. E.g. a coupled level-set volume-of-fluid (CLSVOF) interface capturing method is used to solve the topological changes of the interface. Physical formulations are integrated with moving-mesh (MM) technique to decrease the computational cost of 3D simulations and adaptivemesh-refinement (AMR) technique to increase the local accuracy around the interface. The governing equations are solved using High-Performance Computing (HPC) parallel approaches. To the best of the authors’ knowledge, this is the first work dealing with three-dimensional direct numerical simulation of Taylor bubbles rising in non-Newtonian environments.\",\"PeriodicalId\":148883,\"journal\":{\"name\":\"14th WCCM-ECCOMAS Congress\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th WCCM-ECCOMAS Congress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23967/WCCM-ECCOMAS.2020.343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th WCCM-ECCOMAS Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Three-Dimensional Direct Numerical Simulation (DNS) of Taylor Bubbles Rising in Non-Newtonian Environments
Three-dimensional numerical simulation of Taylor gas bubbles as primary unites of slug flow patterns rising in non-Newtonian environments is performed in the context of Direct Numerical Simulation (DNS) of the governing equations, where the whole physics of fluid motions will be taken into account. State-of-the-art numerical tools are proposed to tackle the numerical challenges in the DNS study of this problem. E.g. a coupled level-set volume-of-fluid (CLSVOF) interface capturing method is used to solve the topological changes of the interface. Physical formulations are integrated with moving-mesh (MM) technique to decrease the computational cost of 3D simulations and adaptivemesh-refinement (AMR) technique to increase the local accuracy around the interface. The governing equations are solved using High-Performance Computing (HPC) parallel approaches. To the best of the authors’ knowledge, this is the first work dealing with three-dimensional direct numerical simulation of Taylor bubbles rising in non-Newtonian environments.