基于区域的分层舌头特征提取

Ching-Wei Huang, Yi-Jyun Chen, Tzu-Ting Yen, Kuan-Yi Lin, Duan-Yu Chen
{"title":"基于区域的分层舌头特征提取","authors":"Ching-Wei Huang, Yi-Jyun Chen, Tzu-Ting Yen, Kuan-Yi Lin, Duan-Yu Chen","doi":"10.1109/ICMLC.2014.7009723","DOIUrl":null,"url":null,"abstract":"Tongue diagnosis is important in the Traditional Chinese Medicine (TCM). When doctors analyze the diseases, they usually observe the patient health base on the shape, color and size of tongue. In order to decrease the mistake of subjective judgment, we aim to develop an automatic tongue feature detection system that can help the doctor diagnosis in more scientific way. In this work, a novel region-based hierarchical filtering framework is proposed to robustly detect tongue features. Experiment results obtained using 14-subject dataset with the detection rate being above 70% shows the effectiveness of our proposed framework.","PeriodicalId":335296,"journal":{"name":"2014 International Conference on Machine Learning and Cybernetics","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Region-based hierarchical tongue feature extraction\",\"authors\":\"Ching-Wei Huang, Yi-Jyun Chen, Tzu-Ting Yen, Kuan-Yi Lin, Duan-Yu Chen\",\"doi\":\"10.1109/ICMLC.2014.7009723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tongue diagnosis is important in the Traditional Chinese Medicine (TCM). When doctors analyze the diseases, they usually observe the patient health base on the shape, color and size of tongue. In order to decrease the mistake of subjective judgment, we aim to develop an automatic tongue feature detection system that can help the doctor diagnosis in more scientific way. In this work, a novel region-based hierarchical filtering framework is proposed to robustly detect tongue features. Experiment results obtained using 14-subject dataset with the detection rate being above 70% shows the effectiveness of our proposed framework.\",\"PeriodicalId\":335296,\"journal\":{\"name\":\"2014 International Conference on Machine Learning and Cybernetics\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2014.7009723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2014.7009723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

舌诊在中医中占有重要地位。医生在分析疾病时,通常根据舌头的形状、颜色和大小来观察病人的健康状况。为了减少主观判断的错误,我们的目标是开发一种能够帮助医生更科学地诊断的舌特征自动检测系统。在这项工作中,提出了一种新的基于区域的分层过滤框架来鲁棒检测舌头特征。使用14个受试者数据集进行的实验结果表明,该框架的检测率在70%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Region-based hierarchical tongue feature extraction
Tongue diagnosis is important in the Traditional Chinese Medicine (TCM). When doctors analyze the diseases, they usually observe the patient health base on the shape, color and size of tongue. In order to decrease the mistake of subjective judgment, we aim to develop an automatic tongue feature detection system that can help the doctor diagnosis in more scientific way. In this work, a novel region-based hierarchical filtering framework is proposed to robustly detect tongue features. Experiment results obtained using 14-subject dataset with the detection rate being above 70% shows the effectiveness of our proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信