通过压缩的数字模式挖掘

Tatiana P. Makhalova, S. Kuznetsov, A. Napoli
{"title":"通过压缩的数字模式挖掘","authors":"Tatiana P. Makhalova, S. Kuznetsov, A. Napoli","doi":"10.1109/DCC.2019.00019","DOIUrl":null,"url":null,"abstract":"Pattern Mining (PM) has a prominent place in Data Science and finds its application in a wide range of domains. To avoid the exponential explosion of patterns different methods have been proposed. They are based on assumptions on interestingness and usually return very different pattern sets. In this paper we propose to use a compression-based objective as a well-justified and robust interestingness measure. We define the description lengths for datasets and use the Minimum Description Length principle (MDL) to find patterns that ensure the best compression. Our experiments show that the application of MDL to numerical data provides a small and characteristic subsets of patterns describing data in a compact way.","PeriodicalId":167723,"journal":{"name":"2019 Data Compression Conference (DCC)","volume":"30 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Numerical Pattern Mining Through Compression\",\"authors\":\"Tatiana P. Makhalova, S. Kuznetsov, A. Napoli\",\"doi\":\"10.1109/DCC.2019.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pattern Mining (PM) has a prominent place in Data Science and finds its application in a wide range of domains. To avoid the exponential explosion of patterns different methods have been proposed. They are based on assumptions on interestingness and usually return very different pattern sets. In this paper we propose to use a compression-based objective as a well-justified and robust interestingness measure. We define the description lengths for datasets and use the Minimum Description Length principle (MDL) to find patterns that ensure the best compression. Our experiments show that the application of MDL to numerical data provides a small and characteristic subsets of patterns describing data in a compact way.\",\"PeriodicalId\":167723,\"journal\":{\"name\":\"2019 Data Compression Conference (DCC)\",\"volume\":\"30 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Data Compression Conference (DCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2019.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Data Compression Conference (DCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2019.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

模式挖掘(PM)在数据科学中占有突出的地位,并在广泛的领域中得到应用。为了避免模式的指数爆炸,人们提出了不同的方法。它们基于对趣味性的假设,通常返回非常不同的模式集。在本文中,我们建议使用基于压缩的目标作为合理的和稳健的兴趣度度量。我们定义了数据集的描述长度,并使用最小描述长度原则(MDL)来找到确保最佳压缩的模式。我们的实验表明,MDL在数值数据中的应用提供了一个小而有特征的模式子集,以一种紧凑的方式描述数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Pattern Mining Through Compression
Pattern Mining (PM) has a prominent place in Data Science and finds its application in a wide range of domains. To avoid the exponential explosion of patterns different methods have been proposed. They are based on assumptions on interestingness and usually return very different pattern sets. In this paper we propose to use a compression-based objective as a well-justified and robust interestingness measure. We define the description lengths for datasets and use the Minimum Description Length principle (MDL) to find patterns that ensure the best compression. Our experiments show that the application of MDL to numerical data provides a small and characteristic subsets of patterns describing data in a compact way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信