{"title":"在云端部署容器化深度学习应用","authors":"Rim Doukha, S. Mahmoudi, M. Zbakh, P. Manneback","doi":"10.1109/CloudTech49835.2020.9365868","DOIUrl":null,"url":null,"abstract":"During the last years, the use of Cloud computing environment has increased as a result of the various services offered by Cloud providers (Amazon Web Services, Google Cloud, Microsoft Azure, etc.). Many companies are moving their data and applications to the Cloud in order to tackle the complex configuration effort, for having more flexibility, maintenance, and resource availability. However, it is important to mention the challenges that developers may face when using a Cloud solution such as the variation of applications requirements (in terms of computation, memory and energy consumption) over time, which makes the deployment and migration a hard process. In fact, the deployment will not depend only on the application, but it will also rely on the related services and hardware for the proper functioning of the application. In this paper, we propose a Cloud infrastructure for automatic deployment of applications using the services of Kubernetes, Docker, Ansible and Slurm. Our architecture includes a script to deploy the application depending of its requirement needs. Experiments are conducted with the analysis and the deployment of Deep Learning (DL) applications and more particularly images classification and object localization.","PeriodicalId":272860,"journal":{"name":"2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deployment of Containerized Deep Learning Applications in the Cloud\",\"authors\":\"Rim Doukha, S. Mahmoudi, M. Zbakh, P. Manneback\",\"doi\":\"10.1109/CloudTech49835.2020.9365868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the last years, the use of Cloud computing environment has increased as a result of the various services offered by Cloud providers (Amazon Web Services, Google Cloud, Microsoft Azure, etc.). Many companies are moving their data and applications to the Cloud in order to tackle the complex configuration effort, for having more flexibility, maintenance, and resource availability. However, it is important to mention the challenges that developers may face when using a Cloud solution such as the variation of applications requirements (in terms of computation, memory and energy consumption) over time, which makes the deployment and migration a hard process. In fact, the deployment will not depend only on the application, but it will also rely on the related services and hardware for the proper functioning of the application. In this paper, we propose a Cloud infrastructure for automatic deployment of applications using the services of Kubernetes, Docker, Ansible and Slurm. Our architecture includes a script to deploy the application depending of its requirement needs. Experiments are conducted with the analysis and the deployment of Deep Learning (DL) applications and more particularly images classification and object localization.\",\"PeriodicalId\":272860,\"journal\":{\"name\":\"2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech)\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudTech49835.2020.9365868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudTech49835.2020.9365868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
在过去几年中,由于云提供商提供的各种服务(Amazon Web services、Google Cloud、Microsoft Azure等),云计算环境的使用有所增加。许多公司正在将数据和应用程序迁移到云上,以便处理复杂的配置工作,从而获得更大的灵活性、可维护性和资源可用性。然而,重要的是要提到开发人员在使用云解决方案时可能面临的挑战,例如随着时间的推移应用程序需求(在计算、内存和能耗方面)的变化,这使得部署和迁移成为一个困难的过程。实际上,部署不仅依赖于应用程序,而且还依赖于相关的服务和硬件来实现应用程序的正常功能。在本文中,我们提出了一个云基础架构,用于使用Kubernetes, Docker, Ansible和Slurm的服务自动部署应用程序。我们的体系结构包括一个脚本,用于根据需求部署应用程序。通过分析和部署深度学习(DL)应用程序,特别是图像分类和对象定位,进行了实验。
Deployment of Containerized Deep Learning Applications in the Cloud
During the last years, the use of Cloud computing environment has increased as a result of the various services offered by Cloud providers (Amazon Web Services, Google Cloud, Microsoft Azure, etc.). Many companies are moving their data and applications to the Cloud in order to tackle the complex configuration effort, for having more flexibility, maintenance, and resource availability. However, it is important to mention the challenges that developers may face when using a Cloud solution such as the variation of applications requirements (in terms of computation, memory and energy consumption) over time, which makes the deployment and migration a hard process. In fact, the deployment will not depend only on the application, but it will also rely on the related services and hardware for the proper functioning of the application. In this paper, we propose a Cloud infrastructure for automatic deployment of applications using the services of Kubernetes, Docker, Ansible and Slurm. Our architecture includes a script to deploy the application depending of its requirement needs. Experiments are conducted with the analysis and the deployment of Deep Learning (DL) applications and more particularly images classification and object localization.