线性LCC和LDC的速率放大和查询高效距离放大

Gil Cohen, Tal Yankovitz
{"title":"线性LCC和LDC的速率放大和查询高效距离放大","authors":"Gil Cohen, Tal Yankovitz","doi":"10.4230/LIPIcs.CCC.2021.1","DOIUrl":null,"url":null,"abstract":"The main contribution of this work is a rate amplification procedure for LCC. Our procedure converts any q-query linear LCC, having rate ρ and, say, constant distance to an asymptotically good LCC with qpoly(1/ρ) queries. Our second contribution is a distance amplification procedure for LDC that converts any linear LDC with distance δ and, say, constant rate to an asymptotically good LDC. The query complexity only suffers a multiplicative overhead that is roughly equal to the query complexity of a length 1/δ asymptotically good LDC. This improves upon the poly(1/δ) overhead obtained by the AEL distance amplification procedure [2, 1]. Our work establishes that the construction of asymptotically good LDC and LCC is reduced, with a minor overhead in query complexity, to the problem of constructing a vanishing rate linear LCC and a (rapidly) vanishing distance linear LDC, respectively.","PeriodicalId":336911,"journal":{"name":"Proceedings of the 36th Computational Complexity Conference","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Rate amplification and query-efficient distance amplification for linear LCC and LDC\",\"authors\":\"Gil Cohen, Tal Yankovitz\",\"doi\":\"10.4230/LIPIcs.CCC.2021.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main contribution of this work is a rate amplification procedure for LCC. Our procedure converts any q-query linear LCC, having rate ρ and, say, constant distance to an asymptotically good LCC with qpoly(1/ρ) queries. Our second contribution is a distance amplification procedure for LDC that converts any linear LDC with distance δ and, say, constant rate to an asymptotically good LDC. The query complexity only suffers a multiplicative overhead that is roughly equal to the query complexity of a length 1/δ asymptotically good LDC. This improves upon the poly(1/δ) overhead obtained by the AEL distance amplification procedure [2, 1]. Our work establishes that the construction of asymptotically good LDC and LCC is reduced, with a minor overhead in query complexity, to the problem of constructing a vanishing rate linear LCC and a (rapidly) vanishing distance linear LDC, respectively.\",\"PeriodicalId\":336911,\"journal\":{\"name\":\"Proceedings of the 36th Computational Complexity Conference\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 36th Computational Complexity Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CCC.2021.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th Computational Complexity Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2021.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

这项工作的主要贡献是LCC的速率放大程序。我们的过程将任何q-查询线性LCC,具有速率ρ和恒定距离,转换为具有qpoly(1/ρ)查询的渐近良好LCC。我们的第二个贡献是LDC的距离放大程序,它将任何具有距离δ和恒定速率的线性LDC转换为渐近良好的LDC。查询复杂度只会受到乘法开销的影响,该开销大致等于长度为1/δ的渐近良好LDC的查询复杂度。这改善了由AEL距离放大程序获得的聚(1/δ)开销[2,1]。我们的工作建立了渐近良好LDC和LCC的构造,在查询复杂性方面的开销很小,分别用于构造一个消失率线性LCC和一个(快速)消失距离线性LDC的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rate amplification and query-efficient distance amplification for linear LCC and LDC
The main contribution of this work is a rate amplification procedure for LCC. Our procedure converts any q-query linear LCC, having rate ρ and, say, constant distance to an asymptotically good LCC with qpoly(1/ρ) queries. Our second contribution is a distance amplification procedure for LDC that converts any linear LDC with distance δ and, say, constant rate to an asymptotically good LDC. The query complexity only suffers a multiplicative overhead that is roughly equal to the query complexity of a length 1/δ asymptotically good LDC. This improves upon the poly(1/δ) overhead obtained by the AEL distance amplification procedure [2, 1]. Our work establishes that the construction of asymptotically good LDC and LCC is reduced, with a minor overhead in query complexity, to the problem of constructing a vanishing rate linear LCC and a (rapidly) vanishing distance linear LDC, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信