利用主动磁轴承和内轴驱动的主动转子控制器的振动和弯曲缓解设计

Gauthier A. Fieux, N. Bailey, P. Keogh
{"title":"利用主动磁轴承和内轴驱动的主动转子控制器的振动和弯曲缓解设计","authors":"Gauthier A. Fieux, N. Bailey, P. Keogh","doi":"10.1115/gt2022-82528","DOIUrl":null,"url":null,"abstract":"\n Strategies are required to reduce vibrations in machines that use rotor systems, as these disturbances reduce the life and quality of the machine. A novel low-frequency on-board counter-bend actuator topology has been designed in order to control high frequency vibrations by taking advantage of synchronous forces from the rotating frame of a rotor supported by Active Magnetic Bearings (AMBs). The AMBs ensure in return stable contact-free levitation of the rotor. A complete model of the rotor system is established, based on a finite element representation of the rotor. The feedback control forces of the AMBs are described to account for the non-collocation of the sensor and actuation, and the PD controller gains are chosen using the sensitivity function. The lowest frequency mode of the operating range is located at 2,700 RPM, and time domain analysis shows that the application of symmetric 80 N.m counter-bend moments on the rotor coupling flanges can reduce the vibration amplitude by 88% at this rotation speed.","PeriodicalId":171593,"journal":{"name":"Volume 8B: Structures and Dynamics — Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Rotor Controller Design for Vibration and Bend Mitigation Utilizing Active Magnetic Bearings and Internal Shaft Actuation\",\"authors\":\"Gauthier A. Fieux, N. Bailey, P. Keogh\",\"doi\":\"10.1115/gt2022-82528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Strategies are required to reduce vibrations in machines that use rotor systems, as these disturbances reduce the life and quality of the machine. A novel low-frequency on-board counter-bend actuator topology has been designed in order to control high frequency vibrations by taking advantage of synchronous forces from the rotating frame of a rotor supported by Active Magnetic Bearings (AMBs). The AMBs ensure in return stable contact-free levitation of the rotor. A complete model of the rotor system is established, based on a finite element representation of the rotor. The feedback control forces of the AMBs are described to account for the non-collocation of the sensor and actuation, and the PD controller gains are chosen using the sensitivity function. The lowest frequency mode of the operating range is located at 2,700 RPM, and time domain analysis shows that the application of symmetric 80 N.m counter-bend moments on the rotor coupling flanges can reduce the vibration amplitude by 88% at this rotation speed.\",\"PeriodicalId\":171593,\"journal\":{\"name\":\"Volume 8B: Structures and Dynamics — Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 8B: Structures and Dynamics — Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2022-82528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8B: Structures and Dynamics — Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2022-82528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

需要策略来减少使用转子系统的机器的振动,因为这些干扰降低了机器的寿命和质量。为了利用由主动磁轴承(AMBs)支撑的转子旋转框架的同步力控制高频振动,设计了一种新颖的低频车载反弯曲致动器拓扑结构。amb反过来确保转子稳定的无接触悬浮。基于转子的有限元表示,建立了转子系统的完整模型。描述了AMBs的反馈控制力,以解释传感器和作动器的非配置,并使用灵敏度函数选择PD控制器增益。工作范围的最低频率模态位于2,700 RPM,时域分析表明,在该转速下,在转子联轴器法兰盘上施加80 N.m的对称反弯矩可使振动幅值降低88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active Rotor Controller Design for Vibration and Bend Mitigation Utilizing Active Magnetic Bearings and Internal Shaft Actuation
Strategies are required to reduce vibrations in machines that use rotor systems, as these disturbances reduce the life and quality of the machine. A novel low-frequency on-board counter-bend actuator topology has been designed in order to control high frequency vibrations by taking advantage of synchronous forces from the rotating frame of a rotor supported by Active Magnetic Bearings (AMBs). The AMBs ensure in return stable contact-free levitation of the rotor. A complete model of the rotor system is established, based on a finite element representation of the rotor. The feedback control forces of the AMBs are described to account for the non-collocation of the sensor and actuation, and the PD controller gains are chosen using the sensitivity function. The lowest frequency mode of the operating range is located at 2,700 RPM, and time domain analysis shows that the application of symmetric 80 N.m counter-bend moments on the rotor coupling flanges can reduce the vibration amplitude by 88% at this rotation speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信