频域体积积分方程的新进展

J. Markkanen, P. Ylä‐Oijala
{"title":"频域体积积分方程的新进展","authors":"J. Markkanen, P. Ylä‐Oijala","doi":"10.1049/sbew533e_ch4","DOIUrl":null,"url":null,"abstract":"Volume integral equations (VIEs) are powerful numerical techniques to analyze and simulate electromagnetic properties of structures involving inhomogeneous and anisotropic materials. A number of different VIE formulations exist, and generally speaking, finding the most optimal formulation for a given problem is not straightforward. This requires careful investigation of mapping and spectral properties of operators and selection of finite -element spaces used to convert continuous equations to discrete matrix equations. In this chapter, we review the most commonly used VIE formulations and discuss recent advances in theoretical considerations and numerical discretization techniques. We investigate accuracy, conditioning, and stability of formulations and introduce some recent applications of VIE -based methods","PeriodicalId":287175,"journal":{"name":"New Trends in Computational Electromagnetics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New trends in frequency-domain volume integral equations\",\"authors\":\"J. Markkanen, P. Ylä‐Oijala\",\"doi\":\"10.1049/sbew533e_ch4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Volume integral equations (VIEs) are powerful numerical techniques to analyze and simulate electromagnetic properties of structures involving inhomogeneous and anisotropic materials. A number of different VIE formulations exist, and generally speaking, finding the most optimal formulation for a given problem is not straightforward. This requires careful investigation of mapping and spectral properties of operators and selection of finite -element spaces used to convert continuous equations to discrete matrix equations. In this chapter, we review the most commonly used VIE formulations and discuss recent advances in theoretical considerations and numerical discretization techniques. We investigate accuracy, conditioning, and stability of formulations and introduce some recent applications of VIE -based methods\",\"PeriodicalId\":287175,\"journal\":{\"name\":\"New Trends in Computational Electromagnetics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Trends in Computational Electromagnetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/sbew533e_ch4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Trends in Computational Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/sbew533e_ch4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

体积积分方程是分析和模拟非均质和各向异性材料结构电磁特性的有力数值技术。存在许多不同的VIE公式,一般来说,为给定问题找到最优公式并不简单。这需要仔细研究算子的映射和谱性质,并选择用于将连续方程转换为离散矩阵方程的有限元空间。在本章中,我们回顾了最常用的VIE公式,并讨论了理论考虑和数值离散化技术的最新进展。我们研究了配方的准确性、条件和稳定性,并介绍了基于VIE的方法的一些最新应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New trends in frequency-domain volume integral equations
Volume integral equations (VIEs) are powerful numerical techniques to analyze and simulate electromagnetic properties of structures involving inhomogeneous and anisotropic materials. A number of different VIE formulations exist, and generally speaking, finding the most optimal formulation for a given problem is not straightforward. This requires careful investigation of mapping and spectral properties of operators and selection of finite -element spaces used to convert continuous equations to discrete matrix equations. In this chapter, we review the most commonly used VIE formulations and discuss recent advances in theoretical considerations and numerical discretization techniques. We investigate accuracy, conditioning, and stability of formulations and introduce some recent applications of VIE -based methods
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信