{"title":"通过实践活动教授工业物联网","authors":"Gustavo Sanchez, D. Kataria","doi":"10.5772/intechopen.100217","DOIUrl":null,"url":null,"abstract":"This chapter describes a hands-on educational approach to teach Industrial Internet of Things (IIoT), including activities like problem analysis, programming, testing and debugging. Students are given autonomy to propose and evaluate different solutions, using adequate tools and following best practices. In parallel, key competencies like team management, project planning, costing and time scheduling, are imbibed in students to prepare them to become deployable automation engineers. To illustrate the proposed approach, we elaborate on the experience gained from teaching an elective course to undergraduate engineering students, in terms of learning outcomes, methodology, assessment and feedback. This course was centered on the Node Red platform (based on Node.js), using hardware devices like Arduino Uno, Nano and Raspberry Pi. Sensors commonly used and protocols like Modbus RTU/TCP, OPC UA, MQTT are discussed in the framework of common industrial applications.","PeriodicalId":306423,"journal":{"name":"Insights Into Global Engineering Education After the Birth of Industry 5.0 [Working Title]","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Teaching IIoT through Hands-on Activities\",\"authors\":\"Gustavo Sanchez, D. Kataria\",\"doi\":\"10.5772/intechopen.100217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter describes a hands-on educational approach to teach Industrial Internet of Things (IIoT), including activities like problem analysis, programming, testing and debugging. Students are given autonomy to propose and evaluate different solutions, using adequate tools and following best practices. In parallel, key competencies like team management, project planning, costing and time scheduling, are imbibed in students to prepare them to become deployable automation engineers. To illustrate the proposed approach, we elaborate on the experience gained from teaching an elective course to undergraduate engineering students, in terms of learning outcomes, methodology, assessment and feedback. This course was centered on the Node Red platform (based on Node.js), using hardware devices like Arduino Uno, Nano and Raspberry Pi. Sensors commonly used and protocols like Modbus RTU/TCP, OPC UA, MQTT are discussed in the framework of common industrial applications.\",\"PeriodicalId\":306423,\"journal\":{\"name\":\"Insights Into Global Engineering Education After the Birth of Industry 5.0 [Working Title]\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insights Into Global Engineering Education After the Birth of Industry 5.0 [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.100217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insights Into Global Engineering Education After the Birth of Industry 5.0 [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.100217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This chapter describes a hands-on educational approach to teach Industrial Internet of Things (IIoT), including activities like problem analysis, programming, testing and debugging. Students are given autonomy to propose and evaluate different solutions, using adequate tools and following best practices. In parallel, key competencies like team management, project planning, costing and time scheduling, are imbibed in students to prepare them to become deployable automation engineers. To illustrate the proposed approach, we elaborate on the experience gained from teaching an elective course to undergraduate engineering students, in terms of learning outcomes, methodology, assessment and feedback. This course was centered on the Node Red platform (based on Node.js), using hardware devices like Arduino Uno, Nano and Raspberry Pi. Sensors commonly used and protocols like Modbus RTU/TCP, OPC UA, MQTT are discussed in the framework of common industrial applications.