弹性波的逆随机势散射

Jianliang Li, Peijun Li, Xu Wang
{"title":"弹性波的逆随机势散射","authors":"Jianliang Li, Peijun Li, Xu Wang","doi":"10.1137/22m1497183","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the inverse elastic scattering problem for a random potential in three dimensions. Interpreted as a distribution, the potential is assumed to be a microlocally isotropic Gaussian random field whose covariance operator is a classical pseudo-differential operator. Given the potential, the direct scattering problem is shown to be well-posed in the distribution sense by studying the equivalent Lippmann--Schwinger integral equation. For the inverse scattering problem, we demonstrate that the microlocal strength of the random potential can be uniquely determined with probability one by a single realization of the high frequency limit of the averaged compressional or shear backscattered far-field pattern of the scattered wave. The analysis employs the integral operator theory, the Born approximation in the high frequency regime, the microlocal analysis for the Fourier integral operators, and the ergodicity of the wave field.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"206 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inverse Random Potential Scattering for Elastic Waves\",\"authors\":\"Jianliang Li, Peijun Li, Xu Wang\",\"doi\":\"10.1137/22m1497183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the inverse elastic scattering problem for a random potential in three dimensions. Interpreted as a distribution, the potential is assumed to be a microlocally isotropic Gaussian random field whose covariance operator is a classical pseudo-differential operator. Given the potential, the direct scattering problem is shown to be well-posed in the distribution sense by studying the equivalent Lippmann--Schwinger integral equation. For the inverse scattering problem, we demonstrate that the microlocal strength of the random potential can be uniquely determined with probability one by a single realization of the high frequency limit of the averaged compressional or shear backscattered far-field pattern of the scattered wave. The analysis employs the integral operator theory, the Born approximation in the high frequency regime, the microlocal analysis for the Fourier integral operators, and the ergodicity of the wave field.\",\"PeriodicalId\":313703,\"journal\":{\"name\":\"Multiscale Model. Simul.\",\"volume\":\"206 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Model. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1497183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1497183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究三维随机势的弹性逆散射问题。假设势为微局部各向同性高斯随机场,其协方差算子为经典伪微分算子。在给定势的情况下,通过研究等效Lippmann- Schwinger积分方程,证明了直接散射问题在分布意义上是适定的。对于反散射问题,我们证明随机势的微局部强度可以唯一地以概率1确定,通过实现散射波的平均压缩或剪切后向散射远场模式的高频极限。分析采用了积分算子理论、高频域的玻恩近似、傅里叶积分算子的微局部分析和波场的遍历性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse Random Potential Scattering for Elastic Waves
This paper is concerned with the inverse elastic scattering problem for a random potential in three dimensions. Interpreted as a distribution, the potential is assumed to be a microlocally isotropic Gaussian random field whose covariance operator is a classical pseudo-differential operator. Given the potential, the direct scattering problem is shown to be well-posed in the distribution sense by studying the equivalent Lippmann--Schwinger integral equation. For the inverse scattering problem, we demonstrate that the microlocal strength of the random potential can be uniquely determined with probability one by a single realization of the high frequency limit of the averaged compressional or shear backscattered far-field pattern of the scattered wave. The analysis employs the integral operator theory, the Born approximation in the high frequency regime, the microlocal analysis for the Fourier integral operators, and the ergodicity of the wave field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信