积分度量空间的有限维切比雪夫子空间

N. K. Rakhmetov
{"title":"积分度量空间的有限维切比雪夫子空间","authors":"N. K. Rakhmetov","doi":"10.1070/SM1993V074N02ABEH003351","DOIUrl":null,"url":null,"abstract":"This is a detailed study of the problem of the existence and characterization of finite-dimensional Chebyshev subspaces of the spaces and on the interval , where is an even nonnegative continuous nondecreasing function on the half-line , and the function is measurable, finite, and positive almost everywhere on . If is an -function, it is characterized as a Chebyshev subspace of the Orlicz spaces with the Luxemburg norm.","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON FINITE-DIMENSIONAL CHEBYSHEV SUBSPACES OF SPACES WITH AN INTEGRAL METRIC\",\"authors\":\"N. K. Rakhmetov\",\"doi\":\"10.1070/SM1993V074N02ABEH003351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is a detailed study of the problem of the existence and characterization of finite-dimensional Chebyshev subspaces of the spaces and on the interval , where is an even nonnegative continuous nondecreasing function on the half-line , and the function is measurable, finite, and positive almost everywhere on . If is an -function, it is characterized as a Chebyshev subspace of the Orlicz spaces with the Luxemburg norm.\",\"PeriodicalId\":208776,\"journal\":{\"name\":\"Mathematics of The Ussr-sbornik\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/SM1993V074N02ABEH003351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1993V074N02ABEH003351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

详细研究了空间和区间上有限维Chebyshev子空间的存在性和刻划问题,其中半线上有一个偶非负连续非降函数,该函数在半线上几乎处处是可测的、有限的、正的。如果是一个-函数,它被表征为具有卢森堡范数的Orlicz空间的Chebyshev子空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON FINITE-DIMENSIONAL CHEBYSHEV SUBSPACES OF SPACES WITH AN INTEGRAL METRIC
This is a detailed study of the problem of the existence and characterization of finite-dimensional Chebyshev subspaces of the spaces and on the interval , where is an even nonnegative continuous nondecreasing function on the half-line , and the function is measurable, finite, and positive almost everywhere on . If is an -function, it is characterized as a Chebyshev subspace of the Orlicz spaces with the Luxemburg norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信