仪器放大器RFI整流行为的表征

Chunyu Wu, Guanghua Li, D. Pommerenke, V. Khilkevich, Gary Hess
{"title":"仪器放大器RFI整流行为的表征","authors":"Chunyu Wu, Guanghua Li, D. Pommerenke, V. Khilkevich, Gary Hess","doi":"10.1109/EMCSI.2018.8495427","DOIUrl":null,"url":null,"abstract":"In this paper, the rectification behavior of popular in-amps (instrumentation amplifiers) is measured in both common- and single-ended RF noise injection modes. It is recommended that AD8221 be used in common mode RF noise injection environment, and AD8220 and AD8429 be used in single-ended RF noise injection environment. The mechanism of RF noise rectification inside in-amps is also discussed. It is verified that rectification mainly happens at the non-inverting input of two op-amps in the first stage of an in-amp. The DC voltage difference between inverting input and non-inverting input of the in-amp is further amplified, which will cause a large DC offset at the output. It is shown that symmetry of the first stage in an instrumentation amplifier is very important. The asymmetry of the first stage will increase the DC offset at the output dramatically.","PeriodicalId":120342,"journal":{"name":"2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI & PI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Characterization of the RFI Rectification Behavior of Instrumentation Amplifiers\",\"authors\":\"Chunyu Wu, Guanghua Li, D. Pommerenke, V. Khilkevich, Gary Hess\",\"doi\":\"10.1109/EMCSI.2018.8495427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the rectification behavior of popular in-amps (instrumentation amplifiers) is measured in both common- and single-ended RF noise injection modes. It is recommended that AD8221 be used in common mode RF noise injection environment, and AD8220 and AD8429 be used in single-ended RF noise injection environment. The mechanism of RF noise rectification inside in-amps is also discussed. It is verified that rectification mainly happens at the non-inverting input of two op-amps in the first stage of an in-amp. The DC voltage difference between inverting input and non-inverting input of the in-amp is further amplified, which will cause a large DC offset at the output. It is shown that symmetry of the first stage in an instrumentation amplifier is very important. The asymmetry of the first stage will increase the DC offset at the output dramatically.\",\"PeriodicalId\":120342,\"journal\":{\"name\":\"2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI & PI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI & PI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMCSI.2018.8495427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI & PI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCSI.2018.8495427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文测量了常用的内放(仪表放大器)在共端和单端射频噪声注入模式下的整流行为。建议共模射频噪声注入环境使用AD8221,单端射频噪声注入环境使用AD8220和AD8429。文中还讨论了放大器内射频噪声整流的机理。验证了整流主要发生在内放大器第一级两个运放的非反相输入端。内放大器的反相输入和非反相输入之间的直流电压差进一步放大,这将在输出处造成较大的直流偏置。结果表明,在仪表放大器中,一级的对称性是非常重要的。第一级的不对称将显著增加输出端的直流偏置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of the RFI Rectification Behavior of Instrumentation Amplifiers
In this paper, the rectification behavior of popular in-amps (instrumentation amplifiers) is measured in both common- and single-ended RF noise injection modes. It is recommended that AD8221 be used in common mode RF noise injection environment, and AD8220 and AD8429 be used in single-ended RF noise injection environment. The mechanism of RF noise rectification inside in-amps is also discussed. It is verified that rectification mainly happens at the non-inverting input of two op-amps in the first stage of an in-amp. The DC voltage difference between inverting input and non-inverting input of the in-amp is further amplified, which will cause a large DC offset at the output. It is shown that symmetry of the first stage in an instrumentation amplifier is very important. The asymmetry of the first stage will increase the DC offset at the output dramatically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信